Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: G. Linc x
  • All content x
Clear All Modify Search

Fluorescence in situ hybridization (FISH) is the most versatile and accurate molecular cytogenetic technique for determining euchromatic-heterochromatic boundaries and the locations of repetitive and single-copy DNA sequences and of chromosome-specific BAC clones on chromosomes. The combination of cytogenetic and genetic methods yields a highresolution physical map. FISH allows direct mapping of specific DNA sequences inside the cell (interphase nuclei), along meiotic pachytene chromosomes and isolated chromatin (DNA fibres). The increased sensitivity of the technique and its ability to detect gene locations provide a powerful research tool for genetic and pre-breeding studies. FISH-based physical mapping plays an important role and is increasingly used for studies at the cytological level on the chromatin organization that controls gene expression and regulation. The present minireview describes some of the benefits of alternative FISH-based techniques and their application for studying plant chromosomes and genomes.

Restricted access

New wheat × barley, wheat × Aegilops biuncialis and wheat × rye hybrids were produced with the aim of alien gene transfer from these species into wheat. Amphiploids were produced with the help of colchicine treatment from the last two combinations. The new wheat × barley hybrids were multiplied in tissue culture because of the high degree of sterility and then pollinated with wheat to obtain backcross progenies. Wheat-barley chromosome pairing was detected using genomic in situ hybridization (GISH) in two combinations (Mv9 kr1 × Igri, Asakazekomugi × Manas). In vitro conditions caused an increase in chromosome arm association frequency in both combinations and in fertility in some regenerants. Five wheat-barley translocations were produced in a wheat background and characterized through the combination of cytogenetic and molecular genetic approaches (GISH, FISH and SSR markers). The following translocations were identified: 2DS.2DL-1HS, 3HS.3BL, 6BS.6BL-4HL, 4D-5HS and 7DL.7DS-5HS. Physical mapping of the SSR markers on chromosomes 1H and 5H was carried out using the intragenomic and interspecific translocation breakpoints and the centromere as physical landmarks.  Disomic wheat-Aegilops biuncialis additions were produced after backcrossing the wheat-Ae. biuncialis amphiploids. Fluorescence in situ hybridization (FISH) was carried out using two repetitive DNA clones (pSc119.2 and pAs1) on Ae. biuncialis and its two diploid progenitor species to detect chromosome polymorphism. The 7M and 3M disomic chromosome additions were selected and five more lines still need to be characterized.  The octoploid triticale (Mv9 kr1 × Lovászpatonai) produced in Martonvásár was crossed with a 1RS.1BL wheat cultivar Matador. GISH analysis detected pairing between the 1RS arm of the translocation chromosome and that of Lovászpatonai rye in 32 % of the pollen mother cells, making it possible to select recombinants from this combination. The new recombinants between the 1RS of Petkus and the 1RS of Lovászpatonai rye cultivars are being analysed with the help of microsatellite markers.

Restricted access

Acta Agronomica Hungarica, 48(3), pp. 227–236 (2000) OCCURRENCE OF THE 1RS/1BL WHEAT–RYE TRANSLOCATION IN HUNGARIAN WHEAT VARIETIES B. K Ő SZEGI, G. LINC, A. JUHÁSZ, L. LÁNG and M. MOLNÁR-LÁNG AGRICULTURAL RESEARCH INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, MARTONVÁSÁR, HUNGARY Received: August 15, 2000; accepted: October 15, 2000 The translocation which involves the substitution of the short arm of the 1R rye chromosome for the short arm of the 1B wheat chromosome by means of centric fusion has exercised an enormous influence on the world’s wheat breeding. Since the first mention of this translocation in 1937 the incidence of the 1RS/1BL translocation has been reported in connection with several hundred wheat varieties. Varieties carrying the translocation possess a chromosome segment which includes the resistance genes Sr31 (stem rust, Puccinia graminis), Lr26 (leaf rust, P. recondita), Yr9 (yellow rust, P. striiformis), Pm8 (powdery mildew, Erysiphe graminis) and Gb (aphid, Schizaphis graminum). The present paper investigates the occurrence of the 1RS/1BL translocation in wheat varieties bred in Hungary in recent years. It was found that 35 (53%) of the 66 Hungarian-bred wheat varieties registered in Hungary between 1978 and 1999 carried the 1RS/1BL translocation.

Restricted access