Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: G. Panczer x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The quartz-cristobalite transformation in heated natural chert (flint) rock composed of micro- and ŗypto-quartz was investigated in the temperature interval of 1000–1300°C by micro-Raman spectroscopy, FT-IR spectroscopy, X-ray diffraction and Scanning Electron Microscopy. A small amount of crystobalite was first observed in the chert after heating at 1000°C for 1 h and the transformation was almost completed after heating at 1300°C for 24 h. On the other hand, cristobalite was not detected in well-crystallized pure quartz after heating under the same conditions. The transformation occurs as a solid state nucleation and crystal growth of cristobalite replacing quartz at high-temperatures. The chert rock is naturally rich in crystal defects and boundaries which serve as nucleation sites and enable an earlier quartz-cristobalite transformation.

Restricted access

Abstract  

The products of dickite heated in air at 1000 to 1300°C were studied using curve-fitting of transmission and photoacoustic infrared and micro-Raman spectra. The spectra were compared with those of mullite, Al-spinel, corundum, cristobalite, amorphous silica and meta-dickite. Bands that characterize crystalline phases appeared at 1100°C and became stronger with increasing temperature. Mullite, Al-spinel, corundum and amorphous silica were identified by their characteristic bands. The characteristic IR bands of cristobalite overlap those of mullite and amorphous silica, and its presence was therefore established from intensity ratios of the appropriate bands. The research clearly demonstrated the advantage of using curve-fitting for the identification of high temperature phases in the study of the thermal treatment of kaolin-like minerals by infrared and Raman spectroscopy. This technique seems to be a useful method for materials analysis in the ceramic industry.

Restricted access