Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: G. Varsi x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The thermal decomposition kinetics of irradiated and unirradiated ammonium perchlorate and ammonium perchlorate powder-aluminum particle mixtures has been studied by determining decomposition gas pressurevs. heating time with samples at a controlled temperature Qualitatively the radiation induced changes are similar to those obtained in previous studies on ‘pure’ ammonium perchlorate. The induction period is shortened and the acceleratory and decay period rate constants are increased. The data have been analyzed using Avrami-Erofeev kinetics. The results for pure unirradiated material are in accord with published results. The activation energies for the induction, acceleratory and decay periods for pure pellets were found to be 133.5±6.7, 131.8±6.7 and 127.2±6.7 kJ·mol, respectively. Samples were exposed to either a single gamma-ray irradiation, fission neutron irradiation followed by a gamma-ray irradiation, or to a proton irradiation. When compared on an equal energy deposited basis, the fast neutron induced changes are appreciably larger than the gamma-ray changes. However, the proton induced changes are comparable or slightly more than the gamma-ray effects. Some, or all, of the fast neutron effects can be attributable to the concentrated radiation damage ‘spikes’ along the path of lattice atom recoils. It is likely that these become thermal decomposition sites when the crystals are heated. Protons create fewer spikes than fast neutrons. Overall, the results indicate that any ammonium perchlorate-aluminum propellant mixtures that may be exposed to radiation environments, such as used in this study, should be subjected to a thorough radiation effects analysis if reliable performance is required.

Restricted access