Search Results
You are looking at 1 - 8 of 8 items for
- Author or Editor: G. Verma x
- Refine by Access: All Content x
A purified alkaline thermo-tolerant bacterial lipase from Bacillus cereus MTCC 8372 was immobilized on a Poly (MAc- co -DMA- cl -MBAm) hydrogel. The hydrogel showed approximately 94% binding capacity for lipase. The immobilized lipase (2.36 IU) was used to achieve esterification of myristic acid and isopropanol in n -heptane at 65 °C under continuous shaking. The myristic acid and isopropanol when used at a concentration of 100 mM each in n -heptane resulted in formation of isopropyl myristate (66.0 ± 0.3 mM) in 15 h. The reaction temperature below or higher than 65°C markedly reduced the formation of isopropyl myristate. Addition of a molecular sieve (3 Å × 1.5 mm) to the reaction mixture drastically reduced the ester formation. The hydrogel bound lipase when repetitively used to perform esterification under optimized conditions resulted in 38.0 ± 0.2 mM isopropyl myristate after the 3 rd cycle of esterification.
Abstract
The reinforcement of nano-barium titanate in ferrite filled poly-ether-ether-ketone (PEEK) composites caused a shift in the decomposition temperature, at which maximum mass loss occurred, to higher side and enhancement in char yield in thermogravimetric analysis. Loss tangent and glass transition temperature of ferrite filled PEEK composites were also found to be increased with the reinforcement of nano barium titanate. The effect of nano barium titanate on the melting behaviour of ferrite filled PEEK composites was negligible.
A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa MTCC-4713 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel. The hydrogel-bound lipase achieved 93.6% esterification of ethanol and propionic acid (300 mM: 100 mM) into ethyl propionate at temperature 65oC in 3 h in the presence of a molecular sieve (3 Å). In contrast, hydrogel-immobilized lipase pre-exposed to 5 mM of HgCl2 orNH4Cl resulted in approximately 97% conversion of reactants in 3 h into ethyl propionate under identical conditions. The salt-exposed hydrogel was relatively more efficient in repetitive esterification than the hydrogel- bound lipase not exposed to any of the cations. Moreover, bound lipase exposed Hg2+ or NH4 + ions showed altered specificity towards p-nitrophenyl esters and was more hydrolytic towards higher C-chain p-nitrophenyl esters (p-nitrophenyl laurate and p-nitrophenyl palmitate with C 12 and C 16 chain) than the immobilized lipase not exposed to any of the salts. The later showed greater specificity towards p-nitrophenyl caprylate (C 8).
A new molybdenum(VI) complex Cs2(NH4)2[Mo3O8(C2O4)3] (CAMO) has been prepared and characterized by chemical analysis and IR spectral studies. Thermal decomposition studies have been made using TG, DTA and DTG techniques. The compound is anhydrous and stable up to 160°C. Thereafter it decomposes in three stages. The first and the second stages occur in the temperature ranges 160–220°C and 220–280°C to give the intermediate compounds having the tentative compositions Cs4(NH4)2[Mo6O16(C2O4)3(CO3)2] and Cs4[Mo6O16(C2O4)2(CO3)2] respectively, the later then decomposing to give the end product Cs2Mo3O10 at 370°C. The end product was characterized by chemical analysis, IR spectral and X-ray studies.
Abstract
Human papillomavirus (HPV) is the well-known second most cause of cervical cancer in women worldwide. According to the WHO survey, 70% of the total cervical cancers are associated with types HPV 16 and 18. Presently used prophylactic vaccine for HPV contains mainly capsid protein of L1 virus like particles (VLPs). Correct folding of VLPs and display of neutralizing epitopes are the major constraint for VLP-based vaccines. Further, monoclonal antibodies (mAbs) play a vital role in developing therapeutics and diagnostics. mAbs are also useful for the demonstration of VLP conformation, virus typing and product process assessment as well. In the present study, we have explored the usefulness of mAbs generated against sf-9 expressed HPV 16 VLPs demonstrated as type-specific and conformational dependent against HPV 16 VLPs by ELISA. High affinity and high pseudovirion neutralization titer of mAbs indicated their potential for the development of prophylactic vaccines for HPV. Also, the type-specific and conformational reactivity of the mAbs to HPV 16 VLPs in sf-9 cells by immunofluorescence assay proved their diagnostic potential.
Genotype × environment (G × E) interaction effects are of special interest for identifying the most suitable genotypes with respect to target environments, representative locations and other specific stresses. Twenty-two advanced breeding lines contributed by the national partners of the Salinity Tolerance Breeding Network (STBN) along with four checks were evaluated across 12 different salt affected sites comprising five coastal saline and seven alkaline environments in India. The study was conducted to assess the G × E interaction and stability of advanced breeding lines for yield and yield components using additive main effects and multiplicative interaction (AMMI) model. In the AMMI1 biplot, there were two mega-environments (ME) includes ME-A as CARI, KARAIKAL, TRICHY and NDUAT with winning genotype CSR 2K 262; and ME-B as KARSO, LUCKN, KARSA, GOA, CRRI, DRR, BIHAR and PANVE with winning genotypes CSR 36. Genotypes CSR 2K 262, CSR 27, NDRK 11-4, NDRK 11-3, NDRK 11-2, CSR 2K 255 and PNL 1-1-1-6-7-1 were identified as specifically adapted to favorable locations. The stability and adaptability of AMMI indicated that the best yielding genotypes were CSR 2K 262 for both coastal saline and alkaline environments and CSR 36 for alkaline environment. CARI and PANVEL were found as the most discernible environments for genotypic performance because of the greatest GE interaction. The genotype CSR 36 is specifically adapted to coastal saline environments GOA, KARSO, DRR, CRRI and BIHAR and while genotype CSR 2K 262 adapted to alkaline environments LUCKN, NDUAT, TRICH and KARAI. Use of most adapted lines could be used directly as varieties. Using them as donors for wide or specific adaptability with selection in the target environment offers the best opportunity for widening the genetic base of coastal salinity and alkalinity stress tolerance and development of adapted genotypes. Highly stable genotypes can improve the rice productivity in salt-affected areas and ensure livelihood of the resource poor farming communities.