Search Results

You are looking at 1 - 10 of 20 items for

  • Author or Editor: G. Zhao x
  • All content x
Clear All Modify Search

The purpose of this study was to investigate the effects of endophytic fungi from tartary buckwheat on the host sprout growth and functional metabolite production. Without obvious changes in the appearance of the sprouts, the exogenous fungal mycelia elicitors notably stimulated the sprout growth and rutin accumulation, and the stimulation effect was mainly depended on the mycelia elicitor species along with its treatment dose. Three endophytic fungi Fat6 (Bionectria pityrodes), Fat9 (Fusarium oxysporum) and Fat15 (Alternaria sp.) were screened to be the most effective candidates for promoting F. tataricum sprout growth and rutin production. With application of polysaccharide (PS, 150 mg/l) of endophyte Fat6, PS (200 mg/l) of endophyte Fat9, and PS (150 mg/l) of endophyte Fat15, the rutin yield was effectively increased to 47.89 mg/(100 sprouts), 45.85 mg/(100 sprouts) and 46.83 mg/(100 sprouts), respectively. That was about 1.5- to 1.6-fold compared to the control culture of 29.37 mg/(100 sprouts). Furthermore, the present study revealed that the biosynthesis of the functional flavonoid resulted from the stimulation of the phenylpropanoid pathway by mycelia polysaccharide treatments. Application of specific fungal elicitors could be an efficient strategy for improving the nutritional and functional quality of tartary buckwheat sprouts.

Restricted access

Abstract  

99Tc and 129I are important contributors to risk assessment due to their long half-lives and high mobility as aqueous anionic species. We analyzed 99Tc and 129I in groundwater samples in and near 11 underground nuclear tests and in melt glass and rock samples retrieved from the Chancellor test cavity, Nevada Test Site. The 129I/127I ratio ranges from 10−3 to 10−6 in cavity water and 10−4 to 10−9 in satellite wells. The 99Tc concentration ranges from 3 to 10−4 Bq/l in cavity waters and from 0.3 to 10−4 Bq/l in satellite wells. Downstream migration is apparent for both radionuclides. However, it is affected by both retardation and initial distribution. In-situ 99Tc and 129I K ds calculated using rubble and water concentrations are 3 to 22 ml/g and 0 to 0.12 ml/g, respectively, and are suggestive of mildly reducing conditions. 129I distribution in the melt glass, rubble and groundwater of the Chancellor test cavity is 28%, 24% and 48%, respectively, for 99Tc, it is 65%, 35% and 0.3%, respectively. Our partitioning estimates differ from those of underground tests in French Polynesia, implying that fission product distribution may vary from test to test. Factors that may influence this distribution include geologic conditions (e.g., lithology, water and CO2 content) and the cooling history of the test cavity.

Restricted access

Epimedium pubescens Maxim. and Epimedium koreanum Nakai. are two common and confused species of Herba Epimedii in Chinese Pharmacopoeia 2010 edition. Different species and growing conditions lead to chemical differences between the two species which may result in the improper clinical usage. In this work, a new method based on rapid-resolution liquid chromatography combined with time-of-flight mass spectrometry (RRLC/TOFMS) has been developed for identification and differentiation of major flavonoids in two kinds of Epimedium extract and rat plasma. The compounds were identified effectively based on the accurate extract masses and formulae acquired by RRLC/TOFMS. The fragmentation rules deduced by collision-induced dissociation (CID) were successfully implemented in distinguishing some of the isomers, further validating the results. By using the combined analytical techniques, a total of 40 major flavonoids in extracts of two kinds of Epimedium were identified within 30 min, including 31 common components and 9 characteristic components. After oral administration, three prototype compounds in rat plasma were detected by comparing the constituents measured in vitro with those in vivo, and five metabolites were identified by contrasting the fragmentation rules. The identification and structural elucidation of the chemical constituents provided essential data for further pharmacological and clinical studies on different species of Epimedium.

Restricted access

Abstract  

Two peptide ligands conjugated adenine, [9-N-(tritylmercapto acetyl diglycyl aminoethyl) adenine, Tr-MAG2-Ade] and [9-N-(tritylmercapto acetyl triglycyl aminoethyl) adenine, Tr-MAG3-Ade], are synthesized and labeled with 99mTc by directly labeling method. The stability of 99mTc-MAG2-adenine and 99mTc-MAG3-adenine in vitro is measured. The uptake radios of tumor to muscle at 3h post-injection are 5.70 and 4.92, respectively. The biodistribution and scintigraphic imaging studies show that the two complexes have high localization in tumor and high contrasted tumor images can be obtained, which suggest their potential utility as tumor imaging agents. But the high radioactivity of abdomen could prevent the tumor imaging in this area.

Restricted access

Abstract  

The thermal behavior of five free anthraquinones (chrysophanol, emodin, physcion, aloe-emodin, and rhein) from rhubarb had been investigated using TG, DTG and DTA technique. The results show that all the free anthraquinones have the similar TG and DTG curve shapes, however, due to the substituted groups attached on the skeleton of 1,8-dihydroxy anthraquinone are different, every anthraquinone has different mass loss features. Moreover, all the DTA curves of these free anthraquinones have two obviously characteristic peaks, but with special curvilinear types, peak location and peak values. Therefore, thermal analysis (TA) characteristics of anthraquinones above mentioned could be established, and it is possible to easily distinguish these anthraquinones by using TA technique.

Restricted access

High molecular weight (HMW) glutenin subunits are important seed storage proteins in wheat and its related species. Novel HMWglutenin subunits in Aegilops tauschii accession of TA2484 were detected and characterized. SDS-PAGE analysis revealed the y-type subunit from TA2484 displayed similar electrophoretic mobility compared to that of 1Dy12 subunit. However, the electrophoretic mobility of x-type subunit was faster than that of 1Dx2 subunit. The primary structure of the two cloned subunits from TA2484 was similar to that of the x- and y-type subunits reported before. However, the 148 residues of the x-type subunit, which contained the sequence element GHCPTSLQQ, in the middle of the repetitive domain was quite different from other x-type subunits. Moreover, the 68 residues in this region were identical to those of the y-type subunits from the same accession. Consequently, 1Dx2.3*t (x-type subunit of TA2484) contains an extra cystenin residue located at the repetitive domain, which is novel compared to the x-type subunits reported so far. Phylogenetic analysis indicated that two subunits from accession TA2484 were in the x- and y-type subunit cluster, but bootstrapping value of 100% gave high support for the spilt between two subunits (1Dx2.3*t and 1Dy12.3*t) and their alleles, respectively. A hypothesis on the genetic mechanism generating this novel sequence of 1Dx2.3*t subunit is suggested.

Restricted access
Cereal Research Communications
Authors: W. Xue, A. Gianinetti, Y. Jiang, Z. Zhan, L. Kuang, G. Zhao, J. Yan, and J. Cheng

The cereal endosperm provides nutrients for seedling growth. The effects of seed components in seedling establishments under salt stress are, however, not yet fully explored. In this study, 60 barley recombinant inbred lines derived from Lewis × Karl cross were grown in four different environments, and the seed contents of starch, total soluble protein, phytate, total phenolics, total flavonoids and total inorganic phosphorus were determined in the harvested grains. Seeds of each line from the four environments were also assayed for seedling growth under saline treatments from 0 to 400 mM NaCl. Root and shoot lengths after 7 days decreased with increasing salt concentration. Correlations between seed components and either root or shoot length were established across the four seed sources. ANOVA showed a significant environment/source effect for both seed components and seedling growth, although the latter was less affected by the seed-production environment. Modeling seedling length across multiple salinities for each seed source showed that the environment with the most saline-tolerant root-growth curve was that associated the highest seed phosphorus content. Correlations between seed components and seedling growth traits highlighted phytate and total inorganic phosphorus as key components for seedling growth under moderate salinities. Seed phytate contents benefited seedling growth, even at high salinities, suggesting an additional role for this seed component under stressful growth conditions, possibly linked to its potential function as an osmolyte source.

Restricted access

The objective of this work was to research the antibacterial effects of orange pigment, which was separated from Monascus pigments, against Staphylococcus aureus. The increase of the diameter of inhibition zone treated with orange pigment indicated that orange pigment had remarkable antibacterial activities against S. aureus. Orange pigment (10 mg ml−1) had a strong destructive effect on the membrane and structure of S. aureus by the analysis of scanning electron microscopy as well as transmission electron microscopy. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) further demonstrated that the cell membrane was seriously damaged by orange pigment, which resulted in the leakage of protein from S. aureus cells. A significant decrease in the synthesis of DNA was also seen in S. aureus cells exposed to 10 mg ml−1 orange pigment. All in all, orange pigment showed excellent antibacterial effects against S. aureus.

Restricted access

This study was to examine the effects of four fungal polysaccharides, namely exo-polysaccharide (EPS), water-extracted mycelia polysaccharide (WPS), sodium hydroxideextracted mycelia polysaccharide (SPS), and hydrochloric-extracted mycelia polysaccharide (APS) obtained from the endophytic fungus Bionectra pityrodes Fat6, on the sprout growth and flavonoids production of Fagopyrum tataricum. Without obvious changes in the appearance of the sprouts, the exogenous polysaccharide elicitors notably stimulated the sprout growth and functional metabolites accumulation, and the stimulation effect was mainly depended on the polysaccharide species along with its treatment dose. With application of 150 mg/l of EPS, 150 mg/l of WPS and 200 mg/l of SPS, the total rutin and quercetin yield of buckwheat sprouts was effectively increased to 49.18 mg/(100 sprouts), 50.54 mg/(100 sprouts), and 52.27 mg/(100 sprouts), respectively. That was about 1.57- to 1.66-fold in comparison with the control culture of 31.40 mg/(100 sprouts). Moreover, the present study revealed the accumulation of bioactive flavonoids resulted from the stimulation of the phenylpropanoid pathway by fungal polysaccharide treatments. It could be an efficient strategy for improving the nutritional and functional quality of tartary buckwheat sprouts applied with specific fungal elicitors.

Restricted access

Thermodynamic investigation of room temperature ionic liquid

The heat capacity and thermodynamic functions of BMIPF6

Journal of Thermal Analysis and Calorimetry
Authors: Z. Zhang, T. Cui, J. Zhang, H. Xiong, G. Li, L. Sun, F. Xu, Z. Cao, F. Li, and J. Zhao

Abstract  

The molar heat capacities of the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluoroborate (BMIPF6) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature (X) by polynomial equations, C P,m (J K−1 mol−1) = 204.75 + 81.421X − 23.828 X 2 + 12.044X 3 + 2.5442X 4 [X = (T − 132.5)/52.5] for the solid phase (80–185 K), C P,m (J K−1 mol−1) = 368.99 + 2.4199X + 1.0027X 2 + 0.43395X 3 [X = (T − 230)/35] for the glass state (195 − 265 K), and C P,m (J K−1 mol−1) = 415.01 + 21.992X − 0.24656X 2 + 0.57770X 3 [X = (T − 337.5)/52.5] for the liquid phase (285–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BMIPF6 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BMIPF6 was measured to be 190.41 K, the enthalpy and entropy of the glass transition were determined to be ΔH g = 2.853 kJ mol−1 and ΔS g = 14.98 J K−1 mol−1, respectively. The results showed that the milting point of the BMIPF6 is 281.83 K, the enthalpy and entropy of phase transition were calculated to be ΔH m = 20.67 kJ mol−1 and ΔS m = 73.34 J K−1 mol−1.

Restricted access