Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Giordano Novak Rossi x
- Refine by Access: All Content x
Abstract
The thermal behavior of binary mixtures of paracetamol and a polymeric excipient (microcrystalline cellulose, hydroxypropylmethylcellulose and cross-linked poly(vinylpyrrolidone)) was investigated. The physical mixtures, ranging from 50 to 90% by mass of drug, were submitted to a heating-cooling-heating program in the 35–180C temperature range. Solid-state analysis was performed by means of differential scanning calorimetry (DSC), hot stage microscopy (HSM), micro-Fourier transformed infrared spectroscopy (MFTIR), and scanning electron microscopy (SEM). The polymeric excipients were found to address in a reproducible manner the recrystallization of molten paracetamol within the binary mixture into Form II or Form III. The degree of crystallinity of paracetamol in the binary mixtures, evaluated from fusion enthalpies during the first and second heating scans, was influenced by the composition of the mixture, the nature of the excipient and the thermal history. In particular, DSC on mixtures with cross-linked poly(vinylpyrrolidone) and hydroxypropylmethylcellulose with drug contents below 65 and75%, respectively, evidenced the presence only of amorphous paracetamol after the cooling phase. Microcrystalline cellulose was very effective in directing the recrystallization of molten paracetamol as Form II.
Background and aims
The psychoactive capacity of the alkaloid N,N-dimethyltryptamine (DMT) has been known for decades, and its presence in beverages used in religious contexts around the world – such as ayahuasca – has attracted growing attention from the scientific community due to its possible anxiolytic and antidepressant effects. Mimosa hostilis, popularly known as jurema preta in Brazil, is a plant known to be utilized for extracting DMT, especially for recreational use. In this study, we confirmed if five different organic solvents (n-hexane, ethyl acetate, n-butanol, dichloromethane, and chloroform) would extract non-purified DMT from M. hostilis and compared them in terms of DMT concentration found in the five organic solvents cited before.
Methods
We have performed the straight to base technique for the extraction of DMT found on the Internet. The evaluation of DMT concentration in the organic solvents was performed via UPLC-ESI-MS/MS. No investigation was performed on other compounds in the solvents.
Results
All the organic solvents extracted non-purified DMT, from lower to higher concentration: n-hexane, ethyl acetate, chloroform, n-butanol, and dichloromethane.
Conclusions
The Internet straight to base method indeed extracts DMT from M. hostilis roots. However, DMT is not purified and the exact composition of the extracts and its toxicology is unknown. Thus, recreational DMT users are exposing themselves to products with unknown composition and effects.