Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: György Czuppon x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

In the Middle Anisian, extensional tectonic movements led to the development of isolated carbonate platforms in the area of the southwestern part of the Transdanubian Range. The platforms are made up of meter-scale peritidal–lagoonal cycles bounded by subaerial exposure surfaces. One of the platform successions (Tagyon Platform) consists predominantly of limestone that contains partially and completely dolomitized intervals, whereas the other one (Kádárta Platform) is completely dolomitized. Drowning of the platforms took place in the latest Pelsonian to the early Illyrian interval when submarine highs came into existence and then condensed pelagic carbonate successions with volcanic tuff interbeds were deposited on the top of the drowned platforms from the late Illyrian up to the late Ladinian. The comparative study of dolomitization of the coeval platforms, affected by different diagenetic histories, is discussed in the current paper. Traces of probably microbially-mediated early dolomitization were preserved in the slightly dolomitized successions of the Tagyon Platform. This might also have been present in the successions of the Kádárta Platform, but was overprinted by geothermal dolomitization along the basinward platform margin and by pervasive reflux dolomitization in the internal parts of the platform. The Carnian evolution of the two submarine highs was different, and this may have significantly influenced the grade of the shallow to deeper burial dolomitization.

Open access
Acta Geologica Hungarica
Authors:
Réka Lukács
,
György Czuppon
,
Szabolcs Harangi
,
Csaba Szabó
,
Theodor Ntaflos
, and
Friedrich Koller

Silicate melt inclusions are frequent in the phenocryst phases (quartz, plagioclase, orthopyroxene, ilmenite and accessory minerals) of the Miocene silicic pyroclastic rocks of the Bükkalja Volcanic Field, Northern Hungary. These melt inclusions were trapped at different stages of magma evolution; therefore, they provide important information on the petrogenetic processes. The melt inclusions in the Bükkalja pyroclastic rocks show various textures such as (1) wholly enclosed type; (2) hourglass inclusions and (3) reentrant or embayment glass. Among the wholly enclosed type melt inclusions further textural subgroups can be distinguished based on their shape: negative crystal, rounded, elongated and irregular shaped. These various textures reflect differences in the time of entrapment prior to eruption and in the post-entrapment condition in the magma chamber. The largest textural variation was found in the quartz-hosted melt inclusions. However, the major element compositions of these melt inclusions do not differ from one another in the same unit. In general, compositions of the melt inclusions are similar to the chemistry of the glass shards. Comparing the composition of the quartz-hosted melt inclusions from three main ignimbrite units (Lower, Middle and Harsány Ignimbrite Units), slight differences have been recognized, suggesting distinct erupted host magmas. Melt inclusions from the andesitic lithic clast of the Lower Ignimbrite Unit could represent heterogeneous interstitial melt in the crystal mush zone at the magma chamber wall. The largest geochemical variation was found in the melt inclusion of the Middle Ignimbrite Unit, even in single samples. This compositional variation overlaps that of the rhyolitic juvenile clasts, but does not match that of the glasses of scoria clasts. We suggest that syn-eruptive magma mixing (mingling) occurred in a compositionally heterogeneous magma chamber of the Middle Ignimbrite Unit.

Restricted access
Central European Geology
Authors:
György Czuppon
,
Attila Demény
,
Szabolcs Leél-Őssy
,
József Stieber
,
Mihály Óvári
,
Péter Dobosy
,
Ágnes Berentés
, and
Richard Kovács

Abstract

In this study, already published and new monitoring data are compiled from the Baradla and Béke caves in the Aggtelek Karst, from the Vacska Cave in the Pilis Mountains as well as from the Szemlőhegy and Pálvölgy caves in the Buda Hills. Recent investigations (2019–2020) include monitoring of climatological parameters (e.g., temperature, CO2) measured inside and outside the caves, and the chemical, trace element and stable isotopic compositions of drip waters. In the Baradla Cave, the main focus of the investigation was on the stable isotope composition and the temperature measurements of drip water. In the Vacska Cave, which belongs to the Ajándék-Ariadne cave system, CO2 measurements and drip water collection were conducted in order to perform chemical and stable isotope measurements. In the Szemlőhegy and Pálvölgy caves, the chemical and stable isotope compositions of drip waters at six sites were determined. These datasets were used to characterize the studied caves and the hydrological processes taking place in the karst, and to trace anthropogenic influences. Climatological investigation revealed seasonality in CO2 concentration related to outside temperature variation, indicating a variable ventilation regime in the caves. In addition, the contributions of the winter and summer precipitation to the drip water were also estimated, in order to evaluate the main infiltration period. The knowledge of these parameters plays a crucial role in constraining the carbonate precipitation within the cave. Thus, the dataset compiled in this study can provide a basis for the interpretation of speleothem-based proxies.

Open access
Central European Geology
Authors:
Attila Demény
,
Alexandra Németh
,
Zoltán Kern
,
György Czuppon
,
Mihály Molnár
,
Szabolcs Leél-Őssy
,
Mihály Óvári
, and
József Stieber

Determination of the long-term behavior of cave systems and their response to changing environmental conditions is essential for further paleoclimate analyses of cave-hosted carbonate deposits. For this purpose, four actively forming stalagmites were collected in the Baradla Cave where a three-year monitoring campaign was also conducted. Based on textural characteristics and radiocarbon analyses, the stalagmites are composed of annual laminae, whose counting was used to establish age–depth relationships. Fast and slowly growing stalagmites have different stable carbon and oxygen isotope compositions as well as trace element contents that could be attributed to differences in drip water migration pathways. The stable isotope compositions were compared with meteorological data of the last ∼100 years indicating that carbon isotope compositions of the stalagmites may reflect changes in precipitation amount, while oxygen isotope compositions are more related to temperature variations. The combined textural–geochemical–meteorological interpretation lead us to select the isotope record that can best reflect variations in environmental conditions and can be used for further evaluation of the climate–proxy relationships.

Open access