# Search Results

## You are looking at 1 - 6 of 6 items for

• Author or Editor: H. Alzer
Clear All Modify Search  # Note on an inequality for infinite series

Author: H. Alzer
Restricted access

# Über Eine Zweiparametrige Familie von Mittelwerten

Author: H. Alzer
Restricted access

# Discrete analogues of a Gronwall-type inequality

Author: H. Alzer
Restricted access

# Refinement of an inequality of H. Kober

Author: H. Alzer

## Without Abstract

Restricted access

# On some inequalities involving (n!)1/n, II

Author: H. Alzer

We prove: IfG(n) denotes the geometric mean of the firstn positive integers, then

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$1< 1 + \frac{{G(n)}}{{G(n - 1)}} - \frac{{G(n + 1)}}{{G(n)}}< 1 + \frac{1}{n} - \frac{1}{{n + 1}}< n\frac{{G(n + 1)}}{{G(n)}} - (n - 1)\frac{{G(n)}}{{G(n - 1)}}$$ \end{document}
holds for alln≥3.

Restricted access

# A variant of the Fejér–Jackson inequality

Authors: Horst Alzer and Man Kam Kwong

## Abstract

We prove: For all natural numbers n and real numbers x ∈ [0, π] we have $−548130−585≤∑k=1n(−1)k+1(sin((2k−1)x)2k−1+sin(2kx)2k)$.

The sign of equality holds if and only if n = 2 and x = 4π/5.

Restricted access  