Search Results

You are looking at 1 - 10 of 27 items for

  • Author or Editor: H. Chung x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The determination of the hydrogen concentrations in coal and metal samples were investigated by using the PGAA system at the HANARO Research Reactor, KAERI. The calibration curve of the hydrogen concentration was obtained from a standard sample and the effects of the interference peaks near the gamma-energy region of hydrogen were investigated. The background in the hydrogen peak of a prompt gamma-ray spectrum was measured for the sample chamber and shielding materials of an atmospheric state. The combined uncertainties estimated for the analysis procedure were in the range of 4–5%. Two kinds of certified reference materials, NIST SRM 1632c (Coal), NIST SRM 173c (Titaniumbase Alloy) and NIST SRM 2453 (Titanium Alloy) were used to verify the accuracy and precision of the measurement. The relative error was in the range of 3–6% and the relative standard deviation were less than 4%.

Restricted access

Abstract  

This study intended to demonstrate the use of k 0-IAEA software with the NAA#3 irradiation hole in the HANARO research reactor and the gamma-ray spectrometers at the NAA laboratory in the Korea Atomic Energy Research Institute (KAERI). NIST SRM 2586-Soil was chosen as a sample to validate the analytical protocol by using the k 0-IAEA software. Twenty four elements were determined and the resultant deviations between the experimental results and the certified values were all within 10% except for Dy. In addition, an analysis of three types of synthetic multielement standards (SMELS) prepared by the Institute for Reference Materials and Measurements (IRMM) and Institute of Nuclear Science (INW) in Belgium was executed. The analytical results agreed well with the assigned values and the U-scores for most of the elements were lower than 2.

Restricted access

Abstract  

Carbonate ions significantly inhibit the decomposition of TCE (trichloroethylene) and PCE (perchloroethylene) by gamma-rays. The inhibition effect is larger in the case of TCE than PCE due to a greater dependence of TCE decomposition on hydroxyl radicals. The inhibition effect of carbonate ions was characterized by an EPR/spin-trapping technique. The intensity of DMPO-OH adduct signal decreased as the carbonate ion concentration increased and the percent of signal reduction was linearly proportional to the logarithm of carbonate ion concentration. This directly proves that the carbonate ions inhibit the decomposition of TCE and PCE by scavenging hydroxyl radicals.

Restricted access

Abstract  

A pilot plant was developed for the reclamation and reuse of secondary effluent from a sewage treatment plant. The plant system consists of sand filtration, gamma-irradiation, ozonation and ion-exchange. Gamma-irradiation showed effective organic contaminant decomposition and this resulted in the reduction of 5-day biochemical oxygen demand (BOD5), color, chemical oxygen demand (CODCr) and total organic carbon (TOC). Ion-exchange significantly removed inorganic ions, and thus reduced total nitrogen (TN) and total phosphorus (TP). The average reduction in color, CODCr, BOD5, TOC, TN and TP, which was obtained after 12 operations, was 64, 52, 67, 61, 95 and 92%, respectively. Irrespective of applied radiation dose, the treated water fully satisfied the quality requirements of household water that can be used for all home uses except for drinking and human contact uses.

Restricted access

Abstract  

Gamma-ray treatment in the presence of ozone (O3) and titanium dioxide (TiO2) showed an efficient removal of trichloroethylene (TCE) and perchloroethylene (PCE). Without gamma-irradiation, TCE and PCE were not sufficiently decomposed to comply with the water quality limit of groundwater. However, near 100% of TCE and PCE were removed at a dose of 300 Gy in the presence of O3 and TiO2, where TiO2 showed an explicit enhancement of decomposition. Cytotoxicity test using Chinese hamster V79 cells showed no toxicity of the TCE and PCE decomposition products.

Restricted access

Background and aims

Research examining problematic mobile phone use has increased markedly over the past 5 years and has been related to “no mobile phone phobia” (so-called nomophobia). The 20-item Nomophobia Questionnaire (NMP-Q) is the only instrument that assesses nomophobia with an underlying theoretical structure and robust psychometric testing. This study aimed to confirm the construct validity of the Persian NMP-Q using Rasch and confirmatory factor analysis (CFA) models.

Methods

After ensuring the linguistic validity, Rasch models were used to examine the unidimensionality of each Persian NMP-Q factor among 3,216 Iranian adolescents and CFAs were used to confirm its four-factor structure. Differential item functioning (DIF) and multigroup CFA were used to examine whether males and females interpreted the NMP-Q similarly, including item content and NMP-Q structure.

Results

Each factor was unidimensional according to the Rach findings, and the four-factor structure was supported by CFA. Two items did not quite fit the Rasch models (Item 14: “I would be nervous because I could not know if someone had tried to get a hold of me;” Item 9: “If I could not check my smartphone for a while, I would feel a desire to check it”). No DIF items were found across gender and measurement invariance was supported in multigroup CFA across gender.

Conclusions

Due to the satisfactory psychometric properties, it is concluded that the Persian NMP-Q can be used to assess nomophobia among adolescents. Moreover, NMP-Q users may compare its scores between genders in the knowledge that there are no score differences contributed by different understandings of NMP-Q items.

Open access

Abstract  

In the boron neutron capture therapy, an accurate determination of the boron content in a biological sample is very important. The boron content was investigated with a standard solution of boron which was administered intraperitoneally with a dose of 750 mg/kg body weight into mice induced cancer cells and tumors. The boron content for two types of a sample was compared to the boronophenylalanine for the tumor and the ethylamine derivatives for the induced cancer cell, which were also investigated for their accumulation rate in each organ such as blood, spleen, liver, kidney and brain. An analytical quality control was carried out by using certified reference materials such as Peach Leaves, Apple Leaves and Spinach Leaves. The relative error of the measured values was in good agreement within 2% to the certified values.

Restricted access

Abstract  

In order to study the effects of air pollution, about 1,300 samples of airborne particulate matter (APM) were collected at suburban and industrial sites, in Daejeon, Korea from 1998 to 2006. The concentrations of carcinogenic (As and Cr) and non-carcinogenic metals (Al, Mn, and Zn) were determined by using instrumental neutron activation analysis (INAA). These long-term metal concentration data were applied to a risk assessment of inhalation exposure using Monte Carlo analysis (MCA).

Restricted access

Abstract  

The extraction of Am(III) and Eu(III) using a γ-pre-irradiated N,N′-dimethyl-N,N′-dibutyltetradecyl malonamide (DMDBTDMA) modified with N,N′-dihexyloctanamide (DHOA) in n-dodecane (NDD) at 4.5M HNO3 has been studied as a function of the absorbed dose up to 2×106 Gray. The distribution ratios of Am(III) and Eu(III) were almost constant until a dose of 1×105 Gray and then they decreased gradually up to a dose of 2×106 Gray. The decrease of the distribution ratios of Am(III) and Eu(III) are due to the decreasing concentration of the DMDBTDMA by a γ-pre-irradiation and these results were supported by a determination of the DMDBTDMA concentration with a gas chromatography method. The distribution ratios of Am(III), Eu(III), Ce, Nd and Y with γ-pre-irradiated (DMDBTDMA-DHOA)/NDD have also been studied as a function of the nitric acid concentration and the extraction temperature.

Restricted access