Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: H. Vodičková x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Sorption of radionuclides on homogenized soils (under 2.5 mm grain size) from synthetic groundwater of 8·10−3M ionic strength and pH 8.5 has been studied under dynamic (flow) and static (batch) conditions. The corresponding water-soluble compounds, as carriers in the 10−6 mol/dm3 concentration, were added into the SGW prior to the experiments. Soil samples were taken from several locations around the environment of the High Level Waste Storage Facility at Nuclear Research Institute Řež plc in 5–100 cm depth. The dynamic experiments were carried out in columns made of PP+PE injection syringes of 17.8 cm length and 2.1 cm in diameter. A multi-head peristaltic pump was used for pumping the water upward through the columns at a seepage velocity of about 0.06 cm/min in average. The radioactive nuclides were added into the water stream individually in a form of a short pulse in 0.1 cm3 of demineralized water. Dynamic desorption experiments were performed with the same experimental arrangement using a mixture of 10−2N H2SO4 and 10−2N HNO3 in a volume ratio of 2: 1. Retardation, distribution and hydrodynamic dispersion coefficients during transport of radionuclides were determined by the evaluation of the integral form of a simple advection-dispersion equation, used for fitting experimental data and modeling the theoretical sorption breakthrough and desorption displacement curves. The static experiments were realized in 100 cm3 plastic bottles stirring 5 g of soil samples with SGW occasionally in a soil to SGW ratio of 1: 10 (m/V). Kinetic parameters including equilibrium sorption activity, activity transfer rate constants and sorption half-times were also determined. The results of dynamic experiments were compared with static sorption experiments.

Restricted access

Abstract  

Transport and sorption of water-soluble 85Sr2+ and 125I in the columns with beds of crushed crystalline rocks from synthetic groundwater has been studied under dynamic flow conditions. Samples of crystalline rocks: diorite-I, diorite-II, gabbro, granite and tonalite, having the grain size between 0.25 and 0.80 mm, were used. Plastic syringes of 8.8 cm length and 2.1 cm in diameter were applied as columns. The synthetic groundwater was pumped downward through the columns with a seepage velocity of about 0.2 cm/min and the given radioactive nuclide was added into the water stream individually in a form of a short pulse. In case of 85Sr, desorption from diorite-I was also studied using an artificial acid rainfall and then, the longitudinal distribution of the residual 85Sr activity along the bed was measured. Retardation, distribution and hydrodynamic dispersion coefficients were determined by the evaluation of respective breakthrough curves. A corrected integral form of a simple advection–dispersion equation was derived and used for fitting the experimental data. The K d-parameters resulting from dynamic experiments were also compared with the results of static sorption experiments.

Restricted access

Abstract  

In this paper, the sorption behavior of Cs+ and Sr2+ on column of fucoidic sands under dynamic flow conditions was investigated, and their sorption capacities (SC) towards these two cations were studied. The determination of SC is based on the construction of respective breakthrough curves using 137Cs and 85Sr radionuclides as isotopic indicators in laboratory experiments. The samples were taken from several parts of the borehole in the area of interest. Undisturbed cores of 5 cm in diameter and 10 cm long were put in the glass columns and the cores were perfectly tightened using acrylate resin. In this time-dependence study, the so-called cenoman background groundwater was used. A concentration of 10−6 mol/dm3 of Cs+ and Sr2+ in liquid phase individually was established using neutral salts of CsNO3 and Sr(NO3)2, respectively. The groundwater was introduced at the bottom of the columns by a multi-head peristaltic pump, at a constant flow-rate of about 4 cm3/h. The results show that the sorption capacity of the investigated fucoidic sands for 137Cs and 85Sr is 0.1–1.5 and 0.05–0.5 μmol/100 g, respectively, in dependence on the evaluation of corresponding breakthrough curves. Some differences in the behavior of the cores during the experiments have also been observed and explained.

Restricted access

Abstract  

In migration experiments, sorption of 137Cs and 152,154Eu in the columns of crushed crystalline rocks of 0.25–0.8 mm grain size under dynamic flow conditions from the synthetic groundwater (SGW) has been studied. Five samples of crystalline rocks from Cavernous Gas Reservoir near Příbram were taken. Plastic syringes of 8.8 cm length and 2.1 cm in diameter were used as columns. The water phase was pumped downward through the columns, using a multi-head peristaltic pump, with a seepage velocity of about 0.2 cm/min. The radioactive nuclides, containing chemical carriers, were added into the water stream individually in the form of a short pulse. Desorption experiments were carried out with 2:1 (v/v) mixture of H2SO4 and HNO3. In the columns the longitudinal distribution of the residual 137Cs and 152,154Eu activities was also determined. By the evaluation of respective breakthrough and displacement curves, the experimental and theoretical retardation factors, distribution coefficients and hydrodynamic dispersion coefficients were determined using the integrated analytical form of a simple advection-dispersion equation (ADE). Dynamic sorption experiments were also compared with the results of static sorption experiments.

Restricted access