Search Results

You are looking at 1 - 10 of 63 items for

  • Author or Editor: H.-L. Zhang x
  • All content x
Clear All Modify Search

Abstract  

The complexes of [Sm(o-MOBA)3bipy]2·H2O and [Sm(m-MOBA)3bipy]2·H2O (o(m)-MOBA = o(m)-methoxybenzoic acid, bipy-2,2′-bipyridine) have been synthesized and characterized by elemental analysis, IR, UV, XRD and molar conductance, respectively. The thermal decomposition processes of the two complexes were studied by means of TG–DTG and IR techniques. The thermal decomposition kinetics of them were investigated from analysis of the TG and DTG curves by jointly using advanced double equal-double steps method and Starink method. The kinetic parameters (activation energy E and pre-exponential factor A) and thermodynamic parameters (ΔH , ΔG and ΔS ) of the second-step decomposition process for the two complexes were obtained, respectively.

Restricted access

Berberine, a primary pharmacological active constitute of Coptidis Rhizoma, could inhibit neuronal apoptosis in cerebral ischemia. Here, we aimed to investigate whether and how HIF-1 is implicated in the anti-apoptosis effect of berberine on neurons under hypoxia/ischemia. Viability of PC12 cells treated with berberine prior to or following CoCl2-induced hypoxia was evaluated. Annexin V-PI staining was employed to analyse cell apoptosis ratio. HIF-1α and apoptosis-associated molecules were detected via Western blotting. TUNEL and immunohistochemistry were used to demonstrate apoptosis, HIF-1α and p53 levels in cerebral tissue of middle cerebral artery occlusion (MCAO) rats. Berberine pretreatment promoted PC12 cells survival and inhibited apoptosis under hypoxia condition. At the same time, it decreased cell viability and enhancement of apoptosis were observed with berberine treatment under hypoxia. Decreased HIF-1α, caspase 9, caspase 3 and increased Bcl-2/Bax ratio were responsible for the anti-apoptosis of berberine pretreatment. However, pro-apoptosis by berberine under hypoxia was indicated with opposing regulation of those molecules. Significant reduction of apoptosis, HIF-1α and p53 were found in cerebral tissue of MCAO rats treated with berberine. The present study suggests that berberine regulates neuronal apoptosis in cerebral ischemia, which might be dependent on the degree of cell injury. HIF-1 and the followed apoptotic pathway are involved in those effects of berberine.

Restricted access

Abstract  

The concentrations and distributions of total halogen (TX), extractable organohalogen (EOX) and extractable persistent organohalogen (EPOX) were determined in 20 kinds of yogurt specimens collected from Chinese supermarkets using neutron activation analysis (NAA) and gas chromatography equipped with a 63Ni electron capture detector (GC-ECD). The results indicated that the halogens in yogurt mainly existed as non-extractable organohalogen compounds. About 25–30% of EOX was EPOX. EOCl and EPOCl were the main organohalogen species in yogurt. The average concentration of the identified organochlorine, such as organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), was below 4% of EPOCl.

Restricted access

Abstract  

Soybean oil based polyols (5-OH polyol, 10-OH polyol and 15-OH polyol) were synthetised from epoxidized soybean oil. The melting peak of polyols and the relationship between melting peak and the number-average functionality of hydroxyl in polyols were investigated by differential scanning calorimetry (DSC). The thermal decomposition of polyols and some of their thermal properties by thermogravimetry (TG) and derivative thermogravimetry (DTG) were also studied. The thermal stability of polyols in a nitrogen atmosphere was very close hence they had a same baseplate of triglyceride for polyols. The extrapolated onset temperature of polyols in their thermal mass loss, first step had a decreasing order: 5-OH polyol>10-OH polyol>15-OH polyol due to the difficulty in forming multiple elements ring of them had the same order. The thermal behavior of polyols under non-isothermal conditions using Friedman’s differential isoconversional method with different heating rates indicated that the 5-OH polyol had the lowest activation energy in thermal decomposition amongst these polyols according to the same fractional mass loss because of the weakest intramolecular oligomerization. The 15-OH polyol was prior to reach the mass loss region because the six-member ring is more stable than the three-member ring from 10-OH polyol and more easily formed.

Restricted access

Salt stress is one of the major abiotic stress which severely limits plant growth and reduces crop productivity across the world. In the present study, the effects of exogenous pyridoxal-5-phosphate (vitamin B6, VB6) on seedling growth and development of wheat under salt stress were investigated. The results showed that exogenous application of pyridoxal-5-phosphate (VB6) significantly increased the RWC, biomass, the concentration of photosynthetic pigments, proline, the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), together with decreasing the content of Malondiadehyde (MDA) and hydrogen peroxide (H2O2) in wheat leaves under salt stress. Meanwhile, the transcript level of P5CR, P5CS, SOD, TaSOS1 and TaSOS4 were also up-regulated after treatment with pyridoxal-5-phosphate. VB6 acts as a signal in regulating the activities of plant antioxidant enzymes and SOS pathway to improve resistance to salt stress. The current study results may give an insight into the regulatory roles of VB6 in improving salt stress and VB6 could be an easily and effective method to improve salt-stress tolerance to wheat in the field condition. It is urgency to understand the molecular mechanism of VB6 to enhance the salt tolerance of wheat in the next work.

Restricted access

Epimedium pubescens Maxim. and Epimedium koreanum Nakai. are two common and confused species of Herba Epimedii in Chinese Pharmacopoeia 2010 edition. Different species and growing conditions lead to chemical differences between the two species which may result in the improper clinical usage. In this work, a new method based on rapid-resolution liquid chromatography combined with time-of-flight mass spectrometry (RRLC/TOFMS) has been developed for identification and differentiation of major flavonoids in two kinds of Epimedium extract and rat plasma. The compounds were identified effectively based on the accurate extract masses and formulae acquired by RRLC/TOFMS. The fragmentation rules deduced by collision-induced dissociation (CID) were successfully implemented in distinguishing some of the isomers, further validating the results. By using the combined analytical techniques, a total of 40 major flavonoids in extracts of two kinds of Epimedium were identified within 30 min, including 31 common components and 9 characteristic components. After oral administration, three prototype compounds in rat plasma were detected by comparing the constituents measured in vitro with those in vivo, and five metabolites were identified by contrasting the fragmentation rules. The identification and structural elucidation of the chemical constituents provided essential data for further pharmacological and clinical studies on different species of Epimedium.

Restricted access

Abstract  

The thermal decomposition of Zn[NFA]2 5H2O (NFA=C16H18FN3O3, norfloxacin) and its kinetics were studied under non-isothermal conditions in air by TG-DTG and DTA methods. The intermediate and residue for each decomposition were identified from the TG curve. The non-isothermal kinetic data were analyzed by means of the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method. The possible reaction mechanisms were investigated by comparing the kinetic parameters. The kinetic equation for the second stage can be expressed as d/dt=Aexp(–E/RT)(1–).

Restricted access

Abstract

In this paper, organic phase change materials (PCM)/Ag nanoparticles composite materials were prepared and characterized for the first time. The effect of Ag nanoparticles on the thermal conductivity of PCM was investigated. 1-tetradecanol (TD) was selected as a PCM. A series of nano-Ag-TD composite materials in aqueous solution were in-situ synthesized and characterized by means of thermal conductivity evaluation method, TG-DSC, IR, XRD and TEM. The results showed that the thermal conductivity of the composite material was enhanced as the loading of Ag nanoparticles increased. The composite materials still had relatively large phase change enthalpy. Their phase change enthalpy could be correlated linearly with the loading of TD, but their phase change temperature was a little bite lower than that of pure TD. The thermal stability of the composite materials was close to that of pure TD. It appeared that there was no strong interaction between the Ag nanoparticles and the TD. Furthermore, the experiment results indicated that the Ag nanoparticles dispersed uniformly in the materials, occurred in the forms of pure metal.

Restricted access

Abstract  

The isoquinoline alkaloids were isolated from traditional Chinese drugs of Phellodendri Cortex, Radix Stephaniae Tetrandrae, Corydalis Yanhusuo and Corydalis Bungeana. The power-time curves of growth of E. coli at different concentrations of isoquinoline alkaloid at 37�C were determined by a 2277 Thermal Activity Monitor. The rate constant of bacteriostastic activity was calculated. The relationship between growth rate constant and concentration was established. The optimum bacteriostastic concentration was determined. Experimental results have indicated that all the isoquinoline alkaloids isolated from the four kinds of traditional Chinese drugs have bacteriostastic activity and the order is Phellodendri Cortex>Radix Stephaniae Tetrandrae>Corydalis Yanhusuo>Corydalis Bungeana.

Restricted access

Abstract  

The curing kinetics of a bi-component system about o-cresol-formaldehyde epoxy resin (o-CFER) modified by liquid crystalline p-phenylene di[4-(2,3-epoxypropyl) benzoate] (p-PEPB), with 3-methyl-tetrahydrophthalic anhydride (MeTHPA) as a curing agent, were studied by non-isothermal differential scanning calorimetry (DSC) method. The relationship between apparent activation energy E a and the conversion α was obtained by the isoconversional method of Ozawa. The reaction molecular mechanism was proposed. The results show that the values of E a in the initial stage are higher than other time, and E a tend to decrease slightly with the reaction processing. There is a phase separation in the cure process with LC phase formation. These curing reactions can be described by the Šesták–Berggren (S–B) equation, the kinetic equation of cure reaction as follows:
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\frac{{{\text{d}}\alpha }}{{{\text{d}}t}}} = A\exp \left( { - {\frac{{E_{\text{a}} }}{RT}}} \right)\alpha^{m} \left( {1 - a} \right)^{n}$$ \end{document}
.
Restricted access