Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Hanning Guo x
- Refine by Access: All Content x
Abstract
This study presents a mixed model that combines different indicators to describe and predict key structural and dynamic features of emerging research areas. Three indicators are combined: sudden increases in the frequency of specific words; the number and speed by which new authors are attracted to an emerging research area, and changes in the interdisciplinarity of cited references. The mixed model is applied to four emerging research areas: RNAi, Nano, h-Index, and Impact Factor research using papers published in the Proceedings of the National Academy of Sciences of the United States of America (1982–2009) and in Scientometrics (1978–2009). Results are compared in terms of strengths and temporal dynamics. Results show that the indicators are indicative of emerging areas and they exhibit interesting temporal correlations: new authors enter the area first, then the interdisciplinarity of paper references increases, then word bursts occur. All workflows are reported in a manner that supports replication and extension by others.
Abstract
The enormous increase in digital scholarly data and computing power combined with recent advances in text mining, linguistics, network science, and scientometrics make it possible to scientifically study the structure and evolution of science on a large scale. This paper discusses the challenges of this ‘BIG science of science’—also called ‘computational scientometrics’ research—in terms of data access, algorithm scalability, repeatability, as well as result communication and interpretation. It then introduces two infrastructures: (1) the Scholarly Database (SDB) (http://sdb.slis.indiana.edu), which provides free online access to 22 million scholarly records—papers, patents, and funding awards which can be cross-searched and downloaded as dumps, and (2) Scientometrics-relevant plug-ins of the open-source Network Workbench (NWB) Tool (http://nwb.slis.indiana.edu). The utility of these infrastructures is then exemplarily demonstrated in three studies: a comparison of the funding portfolios and co-investigator networks of different universities, an examination of paper-citation and co-author networks of major network science researchers, and an analysis of topic bursts in streams of text. The article concludes with a discussion of related work that aims to provide practically useful and theoretically grounded cyberinfrastructure in support of computational scientometrics research, education and practice.