Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Hazim Albedran x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Drones, specifically quadcopters, have increased in importance during the last years due to their wide range of applications, from civil applications to military employment. One of the most important issues in quadcopters is the efficient control system. While many researchers have dealt with building control systems for symmetric quadcopters, this work presents an efficient control system for asymmetric quadcopters using evolutionary computations. The problem is well-defined throughout the paper, and the methodology is explained in detail in the respective sections. A genetic algorithm is used to tune the weighting matrix of the control system after formulating the control system as an optimization problem. The genetic algorithm was fast and active to increase the performance of the proposed system.

Open access

Abstract

As a result of rainfall in large quantities, the leachate generated under the municipal solid waste (MSW) is increased, which leaks to the groundwater aquifers and pollutes it. Accurate evaluation of leachate leaks levels has long been regarded as a problem in Iraq due to a lack of reliable data and costly measuring costs. This work proposes a novel fuzzy expert system to predict the pollution status of the underground water in sandy soils. The expert system consists of two subsystems; fuzzy logic system and crisp logic system. The expert system is trained using a data set developed by finite element analysis of sandy soil subjected to contamination materials.

Open access
Pollack Periodica
Authors:
Humam Kareem Jalghaf
,
Ali Habeeb Askar
,
Hazim Albedran
,
Endre Kovács
, and
Károly Jármai

Abstract

The paper compares different metaheuristics for using heat exchangers as a benchmark to estimate the best design parameter values using optimization efficient algorithms. Many MATLAB algorithms are used in this study. Also, an engineering equation solver, which is commercial software, is used to solve the issue. The design calculates three variables, which are the length, and inner and outer pipe diameter of the heat exchanger. The results showed that the best algorithms are particle swarm optimization, and when using this algorithm, the optimal design of the double pipe heat exchanger is as follows: the pipe length is 5.6734·10−1 m, the pipe inner diameter is 8.0203·10−3 m, and the pipe outer diameter is 2.2439·10−2 m.

Open access