Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Hongjuan Bai x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

A continuous fixed-bed study was carried out by using zeolite as a low-cost adsorbent for the removal of uranium(VI) ions from aqueous solution under the effect of various process parameters such as the pH the bed depth, the flow rate, the presence of salt and the initial U(VI) ion concentration. The U(VI) ion uptake by zeolite increased with initial U(VI) ion concentration and bed height, but decreased as the flow rate increased. The adsorption capacity reached a maximum at pH of 6.0. A shorter breakthrough time was observed in the presence of salt. The experimental data obtained from the breakthrough curves were analyzed using the Thomas model. The BDST model was also applied to predict the service times for other flow rates and initial concentrations. The results showed that the Thomas model was suitable for the description of the whole breakthrough curve, while the data were in good agreement with the BDST model. The columns were regenerated by eluting the bound U(VI) ions with 0.1 mol L−1 NaHCO3 solution after the adsorption studies. After desorption and regeneration with deionized water, zeolite could be reused to adsorb uranium(VI) at a comparable capacity.

Restricted access