Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Horst Brunotte x
  • All content x
Clear All Modify Search
Periodica Mathematica Hungarica
Authors: Shigeki Akiyama, Horst Brunotte, and Attila Pethő

Abstract  

The concept of a canonical number system can be regarded as a natural generalization of decimal representations of rational integers to elements of residue class rings of polynomial rings. Generators of canonical number systems are CNS polynomials which are known in the linear and quadratic cases, but whose complete description is still open. In the present note reducible CNS polynomials are treated, and the main result is the characterization of reducible cubic CNS polynomials.

Restricted access
Periodica Mathematica Hungarica
Authors: Shigeki Akiyama, Horst Brunotte, Attila Pethő, and Wolfgang Steiner

Summary  

The periodicity of sequences of integers \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(a_{n})_{n\in\mathbb Z}$ \end{document} satisfying the inequalities
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$0 \le a_{n-1}+\lambda a_n +a_{n+1} < 1 \ (n \in {\mathbb Z})$$ \end{document}
is studied for real \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $ \lambda $ \end{document} with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $|\lambda|< 2$ \end{document}. Periodicity is proved in case \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $ \lambda $ \end{document} is the golden ratio; for other values of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $ \lambda $ \end{document} statements on possible period lengths are given. Further interesting results on the morphology of periods are illustrated. The problem is connected to the investigation of shift radix systems and of Salem numbers.
Restricted access
Acta Mathematica Hungarica
Authors: Shigeki Akiyama, Tibor Borbély, Horst Brunotte, Attila Pethő, and Jörg M. Thuswaldner

Summary We are concerned with families of dynamical systems which are related to generalized radix representations. The properties of these dynamical systems lead to new results on the characterization of bases of Pisot number systems as well as canonical number systems.

Restricted access