Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Horst Martini x
Clear All Modify Search

We give a geometric characterization of inner product spaces among all finite dimensional real Banach spaces via concurrent chords of their spheres. Namely, let x be an arbitrary interior point of a ball of a finite dimensional normed linear space X. If the locus of the midpoints of all chords of that ball passing through x is a homothetical copy of the unit sphere of X, then the space X is Euclidean. Two further characterizations of the Euclidean case are given by considering parallel chords of 2-sections through the midpoints of balls.

Restricted access

We prove that, unexpectedly, the illumination number of a direct vector sum of convex bodies is not necessarily equal to the product of the illumination numbers of its summands, and we describe a condition under which equality holds. Some further results and two research problems are presented.

Restricted access
Restricted access

Abstract  

Let P ⊂ Rn be a centrally symmetric, convex n-polytope with 2r vertices, n ≥ 2. Let P be a family of mn + 1 homothetical copies of P. Based on an algorithmical approach to center hyperplanes of finite point sets in Minkowski spaces with polyhedral norms, we show that a hyperplane transversal of all members of P (if it exists) can be found in O(rm) time when the dimension n is fixed.

Restricted access

Summary  

The purpose of this paper is to establish extremal values for inner and outer radii of the unit ball of a Minkowski space for the Holmes--Thompson and Busemann measures. Furthermore, we confirm a conjecture of C. A. Rogers and G. C. Shephard on ellipsoids.

Restricted access

Summary  

Napoleon's original theorem refers to arbitrary triangles in the Euclidean plane. If equilateral triangles are externally erected on the sides of a given triangle, then their three corresponding circumcenters form an equilateral triangle. We present some analogous theorems and related statements for the isotropic (Galilean) plane.

Restricted access
Authors: Gennadiy Averkov and Horst Martini

Abstract  

A convex body K in ℝd is said to be reduced if the minimum width of each convex body properly contained in K is strictly smaller than the minimum width of K. We study the question of Lassak on the existence of reduced polytopes of dimension larger than two. We show that a pyramid of dimension larger than two with equal numbers of facets and vertices is not reduced. This generalizes the main result from [8].

Restricted access

Abstract  

Some theorems from inversive and Euclidean circle geometry are extended to all affine Cayley-Klein planes. In particular, we obtain an analogue to the first step of Clifford’s chain of theorems, a statement related to Napoleon’s theorem, extensions of Wood’s theorem on similar-perspective triangles and of the known fact that the three radical axes of three given circles are parallel or have a point in common. For proving these statements, we use generalized complex numbers.

Restricted access

Abstract  

Studying the relation between the length of a chord of the unit circle and the length of the arc corresponding to it, some new characterizations of the Euclidean plane among all normed planes are obtained. All these results yield characterizations of inner product spaces in higher dimensions.

Restricted access

Summary  

It follows from [1], [4] and [7] that any closed \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n$ \end{document}-codimensional subspace (\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n \ge 1$ \end{document} integer) of a real Banach space \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $X$ \end{document} is the kernel of a projection \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $X \to X$ \end{document}, of norm less than \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $f(n) + \varepsilon$ \end{document}~(\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\varepsilon > 0$ \end{document} arbitrary), where \[ f (n) = \frac{2 + (n-1) \sqrt{n+2}}{n+1}. \] We have \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $f(n) < \sqrt{n}$ \end{document} for \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n > 1$ \end{document}, and \[ f(n) = \sqrt{n} - \frac{1}{\sqrt{n}} + O \left(\frac{1}{n}\right). \] (The same statement, with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\sqrt{n}$ \end{document} rather than \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $f(n)$ \end{document}, has been proved in [2]. A~small improvement of the statement of [2], for \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n = 2$ \end{document}, is given in [3], pp.~61--62, Remark.) In [1] for this theorem a deeper statement is used, on approximations of finite rank projections on the dual space \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $X^*$ \end{document} by adjoints of finite rank projections on \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $X$ \end{document}. In this paper we show that the first cited result is an immediate consequence of the principle of local reflexivity, and of the result from [7].

Restricted access