Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Hye-Min Park x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

For the disposal of a high efficiency particulate air (HEPA) glass filter into the environment, the glass fiber should be leached to lower its radioactive concentration to the clearance level. To derive an optimum method for the removal of uranium series from a HEPA glass fiber, five methods were applied in this study. That is, chemical leaching by a 4.0 M HNO3–0.1 M Ce(IV) solution, chemical leaching by a 5 wt% NaOH solution, chemical leaching by a 0.5 M H2O2–1.0 M Na2CO3 solution, chemical consecutive chemical leaching by a 4.0 M HNO3 solution, and repeated chemical leaching by a 4.0 M HNO3 solution were used to remove the uranium series. The residual radioactivity concentrations of 238U, 235U, 226Ra, and 234Th in glass after leaching for 5 h by the 4.0 M HNO3–0.1 M Ce(IV) solution were 2.1, 0.3, 1.1, and 1.2 Bq/g. The residual radioactivity concentrations of 238U, 235U, 226Ra, and 234Th in glass after leaching for 36 h by 4.0 M HNO3–0.1 M Ce(IV) solution were 76.9, 3.4, 63.7, and 71.9 Bq/g. The residual radioactivity concentrations of 238U, 235U, 226Ra, and 234Th in glass after leaching for 8 h by a 0.5 M H2O2–1.0 M Na2CO3 solution were 8.9, 0.0, 1.91, and 6.4 Bq/g. The residual radioactivity concentrations of 238U, 235U, 226Ra, and 234Th in glass after consecutive leaching for 8 h by the 4.0 M HNO3 solution were 2.08, 0.12, 1.55, and 2.0 Bq/g. The residual radioactivity concentrations of 238U, 235U, 226Ra, and 234Th in glass after three repetitions of leaching for 3 h by the 4.0 M HNO3 solution were 0.02, 0.02, 0.29, and 0.26 Bq/g. Meanwhile, the removal efficiencies of 238U, 235U, 226Ra, and 234Th from the waste solution after its precipitation–filtration treatment with NaOH and alum for reuse of the 4.0 M HNO3 waste solution were 100, 100, 93.3, and 100%.

Restricted access
Acta Veterinaria Hungarica
Authors:
Hye Park
,
Min Hong
,
Sun Hwang
,
Young Park
,
Ka Kwon
,
Jang Yoon
,
Sook Shin
,
Jae Kim
, and
Yong Park

Pseudomonas aeruginosa is one of the causative pathogens of bovine mastitis. Most P. aeruginosa strains possess the type III secretion system (TTSS), which may increase somatic cell counts (SCCs) in milk from mastitis-affected cows. Moreover, most of P. aeruginosa cells can form biofilms, thereby reducing antibiotic efficacy. In this study, the presence and effect of TTSS-related genotypes on increase of SCCs among 122 P. aeruginosa isolates obtained from raw milk samples from mastitis-affected cows and their antibiotic susceptibility at planktonic and biofilm status were investigated. Based on the presence of TTSS-related genes a total of 82.7% of the isolates were found to harbour exoU and/or exoS genes, including the invasive (exoU-/exoS+, 69.4%), cytotoxic (exoU+/exoS-, 8.3%) and cytotoxic/invasive strains (exoU+/ exoS+, 5.0%). Milk containing exoS-positive isolates had higher SCCs than those containing exoS-negative isolates. The majority of isolates showed gentamicin, amikacin, meropenem and ciprofloxacin susceptibility at planktonic status. However, the susceptibility was decreased at the biofilm status. Based on minimum biofilm eradication concentration (MBEC)/minimum inhibitory concentration (MIC) ratios, the range of change in antibiotic susceptibility varied widely depending on the antibiotics (from ≥ 3.1-fold to ≥ 475.0-fold). In conclusion, most P. aeruginosa isolates studied here had a genotype related to increase in SCCs. The efficiency of antibiotic therapy against P. aeruginosa-related bovine mastitis could be improved by analysing both the MBEC and the MIC of isolates.

Restricted access

Abstract  

For the disposal of the high efficiency particulate air (HEPA) glass filter to environment, the glass fiber should be leached to lower its radioactive concentration. To derive the optimum method for removal of Co and Cs from HEPA glass fiber, four methods were applied in this study. Results of electrochemical leaching of glass fiber by 4.0 M HNO3–0.1 M Ce(IV) solution showed that the removal efficiency of 134Cs, 137Cs, and 60Cs from glass fiber after 5 h was 96.4, 93.6, and 93.8%, respectively. Results by 5 wt% NaOH solution showed that the removal efficiency of 134Cs, 137Cs, and 60Cs after 30 h was 81.7, 82.1, and 10.0%, respectively. Results by repeat 2.0 M HNO3 solution showed that the removal efficiencies of 134Cs, 137Cs, and 60Cs after 2 h of three repetitions were 96.2, 99.4, and 99.1%, respectively. Finally, results by repeat 4.0 M HNO3 solution showed that the removal efficiencies of 134Cs, 137Cs, and 60Cs after 4 h of three repetitions were 100, 99.9, and 99.9%, respectively, and their radioactivities were below 0.1 Bq/g. Therefore, the chemical leaching method by 4.0 M HNO3 solution was considered as an optimum one for removal of cesium and cobalt from HEPA glass fiber for self disposal. Also the removal efficiencies of 60Co, 134Cs, and 137Cs from the waste-solution after its precipitation-filtration treatment for reuse of 4.0 M HNO3 waste-solution were 88.0, 95.0, and 99.8%.

Restricted access