Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: I. Dékány x
  • All content x
Clear All Modify Search

Abstract  

The intercalation process ofn-butylamine was investigated. The adsorption ofn-butylamine in interlamellar space had stepwise character in case of both crystalline forms of zirconium phosphate. The intercalatedn-butylamine existed at low concentration as bilayered complex. The reaction heat was determined by a microcalorimetric method. It was found that about 90% of it refers to the neutralization ofn-butylamine and only about 10% is related with surface adsorption (ion exchange). The steps of adsorption are 6.0 J/g and 1.0 J/g reaction heat values, respectively. The enthalpy balance of total process in dilute solution system (c 0=3.0 vol%) is 14.67 kJ/mol. The calculated value for ion adsorption (exchange) was 1.37 kJ/mol.

Restricted access

We are synthetized thermo- and pH-sensitive gels, which are then tested as skin extenders. Our aim is the development of copolymer and composite hydrogels that, when implanted under the human skin, swell osmotically and thereby induce skin growth. During the polimerization reaction we are produced copolymers with varyable composition, which are proceed from two acrylic compounds [N- isopropyl- acrylamide (NIPAAm), and acrylamide (AAm)]. The mechanical strength and the swelling stability of the gels are enhanced by the addition of fillers [Na- montmorillonite (Na- m.) and with alkyl- ammonium ion organophilized Na- montmorillonites [(C n - m.), n = 4, 12, 18]. With this method we are synthetized composite- hydrogels. The filler content of composites varies between 1 and 25 wt%. We observed that in the case of composites synthesized with the addition of fillers, relatively low filler contents (1–5 wt%) resulted in more extensive swelling and stronger gel structure. In the course of the experiments the monomer composition of the gels (0/100–100/0 mol% NIPAAm/AAm) and in the case of composites, the quality (montmorillonite and organophilized montmorillonite) and quantity (1–25 wt%) of fillers are varied. The extent of swelling and the viscoelastic properties can be manipulated through the ratios of these parameters. In the case of certain copolymer and composite gels, values of desorption enthalpy (ΔH m ) corresponding to the actual water contents were also determined by thermoanalytical measurements (DSC). Swelling values determined by gravimetry and enthalpies calculated from DSC measurements were found to be in good correlation. Evaluation and comparison of the rheological and DSC results also allowed conclusions to be drawn concerning the types of interaction operating among the three components of the system, i.e. the polymer skeleton, the filler and water molecules. We found that water molecules within the gel matrix are bound to the 3-D polymer lattice with bonds of different strengths and the strength of these interactions are dependent on both hydrophilicity and charge conditions. In the case of hydrophobic NIPAAm composites a more extensive swelling can be achieved by applying montmorillonite fillers with hydrophobized surfaces, whereas in the case of hydrophilic AAm-based composites the use of hydrophilic montmorillonite fillers ensure more extensive swelling.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: S. Papp, L. Kőrösi, B. Gool, T. Dederichs, P. Mela, M. Möller, and I. Dékány

Abstract  

Gold nanoparticles (Au NPs) were prepared by the reduction of HAuCl4 acid incorporated into the polar core of poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer micelles dissolved in toluene. The formation of Au NPs was controlled using three reducing agents with different strengths: hydrazine (HA), triethylsilane (TES), and potassium triethylborohydride (PTB). The formation of Au NPs was followed by transmission electron microscopy, UV–Vis spectroscopy, isothermal titration calorimetry (ITC), and dynamic light scattering (DLS). It was found that the strength of the reducing agent determined both the size and the rate of formation of the Au NPs. The average diameters of the Au NPs prepared by reduction with HA, TES, and PTB were 1.7, 2.6, and 8 nm, respectively. The reduction of Au(III) was rapid with HA and PTB. TES proved to be a mild reducing agent for the synthesis of Au NPs. DLS measurements demonstrated swelling of the PS-b-P2VP micelles due to the incorporation of HAuCl4 and the reducing agents. The original micellar structure rearranged during the reduction with PTB. ITC measurements revealed that some chemical reactions besides Au NPs formation also occurred in the course of the reduction process. The enthalpy of formation of Au NPs in PS-b-P2VP micelles reduced by HA was determined.

Restricted access

Due to the warm and favourably humid climate of Southern Hungary, the maize is one of the most important crops. The protection against crop damage caused by fusarium and Aspergillus species is essential. Detection of aflatoxin B1 (AFB1) molecules in cereal crops by selective sensors is important, while they can cause serious diseases in humans and animals if they enter the food chain. Our main objective was to develop selective AFB1 sensor with increased sensitivity applying βCD-functionalized gold nanoparticles (AuβCD NPs) in surface plasmon resonance (SPR) measuring apparatus. The nanoparticles ca. 10 nm in diameter were prepared in the presence of thiol-modified cyclodextrin. The adsorption isotherms of AFB1 on bare, thiol-modified cyclodextrin and AuβCD NPs covered Au film surface were calculated using SPR platform. The AFB1 concentration can be quantitatively determined in the 0.001–23.68 ng/mL range. The AuβCD NPs were found to be highly sensitive and exhibited a remarkably low limit of detection (LOD; 1 pg/mL) without using other analytical reagents.

Restricted access