Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: I. Hernádi x
  • All content x
Clear All Modify Search

Microiontophoresis combined with extracellular spike recording is an excellent method for investigating local neuropharmacological effects under in vivo conditions. However, its application has recently become relatively rare in neuroscience research. Now, we aimed to revisit microiontophoresis and demonstrate that it provides valuable data about the pharmacophysiology of neurons and local neuronal networks, in vivo. Extracellular recordings were performed through the central recording channel of multibarrel carbon-fiber microelectrodes in the CA1 pyramidal layer of the hippocampus of anesthetized rats, while N-methyl-D-aspartate (NMDA) was locally administrated by means of microiontophoresis through the surrounding micropipettes of the microelectrode. Various separation procedures were used to distinguish putative pyramidal cells and interneurons. Quality of separation was verified by electrophysiological parameters. After the delivery of NMDA in the vicinity of the examined neurons, firing rate of putative pyramidal cells was increased with a significantly higher grade then that of putative interneurons. The present results in line with previous data indicate that pyramidal cells are more responsive to pharmacological manipulation through NMDA receptors, also confirming the reliability of the separation of different types of neurons in in vivo microiontophoretic experiments.

Restricted access

Recognizing intentions of strangers from facial cues is crucial in everyday social interactions. Recent studies demonstrated enhanced event-related potential (ERP) responses to untrustworthy compared to trustworthy faces. The aim of the present study was to investigate the electrophysiological correlates of automatic processing of trustworthiness cues in a visual oddball paradigm in two consecutive experimental blocks. In one block, frequent trustworthy (p = 0.9) and rare untrustworthy face stimuli (p = 0.1) were briefly presented on a computer screen with each stimulus consisting of four peripherally positioned faces. In the other block stimuli were presented with reversed probabilities enabling the comparison of ERPs evoked by physically identical deviant and standard stimuli. To avoid attentional effects participants engaged in a central detection task. Analyses of deviant minus standard difference waveforms revealed that deviant untrustworthy but not trustworthy faces elicited the visual mismatch negativity (vMMN) component. The present results indicate that adaptation occurred to repeated unattended trustworthy (but not untrustworthy) faces, i.e., an automatic expectation was elicited towards trustworthiness signals, which was violated by deviant untrustworthy faces. As an evolutionary adaptive mechanism, the observed fast detection of trustworthiness-related social facial cues may serve as the basis of conscious recognition of reliable partners.

Restricted access