Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: I. Schneider x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access
Restricted access

The formulae suggested for a series of complexes of Pd(II) with various amino acids have been verified by thermal methods using a derivatograph. A correlation of the obtained kinetic parameters with the structures suggested by electronic and IR spectra of the substances has been attempted.

Restricted access

One way of incorporating useful traits from Aegilops biuncialis (2n=4x=28, U b U b M b M b ) into wheat ( Triticum aestivum L. 2n=6x=42, AABBDD) is to develop first addition then translocation lines. The 2M b , 3M b , 7M b , 3U b , 5U b and 5U b /6U b wheat- Ae. biuncialis addition lines were produced in Martonvásár. To facilitate the exact identification of the addition lines, it was necessary to analyse the fluorescence in situ hybridisation patterns of the parental wheat genotype, Ae. biuncialis and its diploid progenitors ( Ae. umbellulata 2n=2x=14, UU and Ae. comosa 2n=2x=14, MM). The great genetic variability of the Aegilops species causes polymorphism in the fluorescence in situ hybridisation (FISH) patterns of the individual chromosomes. Due to the high level of FISH polymorphism, it is advisable to confirm the identification of the Ae. biuncialis chromosomes with the help of molecular (microsatellite, SSR) markers, so 119 wheat SSR markers were tested on Aegilops biuncialis , on Ae. geniculata (2n=4x=28, U g U g M g M g ), on five wheat- Ae. biuncialis addition lines (2M b , 3M b , 7M b , 3U b , 5U b ) and on an addition series of wheat- Ae. geniculata in order to select SSR markers specific to the U and M genomes of Ae. biuncialis and Ae. geniculata .

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
C. Vasile
,
C. Caşcaval
,
A. Ilie
, and
I. Schneider
Restricted access

A new criterion for evaluating different plasticizers the ability of suppression of the Β transition in plasticized PVC blends. Accordingly, the Β suppression ability is proportional to the PVC-plasticizer compatibility, expressed either by the critical solution temperature, CST, or by the interaction parameter related to the difference between the solubility parameters of the blend components. The criterion is, however, valid for low plasticizer contents (<5%w/w) only, as long as the Β transitions are not overlapped by the α transitions, shifted towards lower temperatures due to the effect of the plasticizer. For higher plasticizer contents the α transition starts to overlap the Β transition and the Β suppression ability of the plasticizer depends increasingly on the efficiency of the plasticizer i.e. on the depression of the glass transition temperature of PVC (related to theT g of the plasticizer). Accordingly, plasticizers with both good efficiency (lowT g) and compatibility are more effective in the Β suppression than plasticizers which have only a higher compatibility but also a highT g (i.e. reduced efficiency).

Restricted access