Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Ibraheem Kasim Ibraheem x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

This paper deals with the disturbance rejection, parameter uncertainty cancelation, and the closed-loop stabilization of the water level of the four-tank nonlinear system. For the four-tank system with relative degree one, a new structure of the active disturbance rejection control (ADRC) has been presented by incorporating a tracking differentiator (TD) in the control unit to obtain the derivate of the tracking error. Thus, the nonlinear-PD control together with the TD serves as a new nonlinear state error feedback. Moreover, a sliding mode extended state observer is presented in the feedback loop to estimate the system's state and the total disturbance. The proposed scheme has been compared with several control schemes including linear and nonlinear versions of ADRC techniques. Finally, the simulation results show that the proposed scheme achieves excellent results in terms of disturbance elimination and output tracking as compared to other conventional schemes. It was able to control the water levels in the two lower tanks to their desired value and exhibits excellent performance in terms of Integral Time Absolute Error (ITAE) and Objective Performance Index (OPI).

Open access
International Review of Applied Sciences and Engineering
Authors:
Ayad Q. Al-Dujaili
,
Amjad J. Humaidi
,
Daniel Augusto Pereira
, and
Ibraheem Kasim Ibraheem

Abstract

Ball and Beam system is one of the most popular and important laboratory models for teaching control systems. This paper proposes a new control strategy to the position control for the ball and beam system. Firstly, a nonlinear controller is proposed based on the backstepping approach. Secondly, in order to adapt online the dynamic control law, adaptive laws are developed to estimate the uncertain parameters. The stability of the proposed adaptive backstepping controller is proved based on the Lyapunov theorem. Simulated results are presented to illustrate the performance of the proposed approach.

Open access

Abstract

This paper compared the performance between Integer Order Fuzzy PID (IOFPID) and Fractional Order Fuzzy PID (FOFPID) controllers for inverted pendulum system as a controlling plant. The parameters of each controller were tuned with four evolutionary optimization algorithms (Social Spider Optimization (SSO), Swarm Optimization (PSO), Genetic Algorithm (GA), and Particle Ant Colony Optimization (ACO)). The comparisons were carried out between the two controllers IOFPID and FOFPID, as well as among the four optimization algorithms for the two controllers. The results of comparisons proved that the FOFPID controller with SSO has achieved the best time response characteristics and the least tuning time.

Open access