# Search Results

## You are looking at 1 - 7 of 7 items for

• Author or Editor: Igor Shparlinski
• Refine by Access: All Content
Clear All Modify Search

# Prime divisors of sparse integers

Periodica Mathematica Hungarica
Author: Igor Shparlinski
Restricted access

# Exponential sums and prime divisors of sparse integers

Periodica Mathematica Hungarica
Author: Igor Shparlinski

## Abstract

We obtain a new lower bound on the number of prime divisors of integers whose g-ary expansion contains a fixed number of nonzero digits.

Restricted access

# On the maximal difference between an element and its inverse modulo n

Periodica Mathematica Hungarica
Authors: Mizan Khan and Igor Shparlinski
Restricted access

# Character sums with subsequence sums

Periodica Mathematica Hungarica
Authors: Sanka Balasuriya and Igor Shparlinski

## Abstract

Let χ be a primitive multiplicative character modulo an integer m ≥ 1. Using some classical bounds of character sums, we estimate the average value of the character sums with subsequence sums
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$T_m (\mathcal{S},\chi ) = \sum\nolimits_{\mathcal{I} \subseteq \{ 1, \ldots ,N\} } {\chi (\sum\nolimits_{i \in \mathcal{I}} {s_i } )}$$ \end{document}
taken over all N-element sequences S = (s 1, …, s N) of integer elements in a given interval [K + 1, K + L]. In particular, we show that T m(S, χ) is small on average over all such sequences. We apply it to estimating the number of perfect squares in subsequence sums in almost all sequences.
Restricted access

# Multiplicative character sums and products of sparse integers in residue classes

Periodica Mathematica Hungarica
Authors: Alina Ostafe and Igor Shparlinski

## Abstract

We estimate multiplicative character sums over the integers with a fixed sum of binary digits and apply these results to study the distribution of products of such integers in residues modulo a prime p. Such products have recently appeared in some cryptographic algorithms, thus our results give some quantitative assurances of their pseudorandomness which is crucial for the security of these algorithms.

Restricted access

# Multiplicative character sums with the Euler function

Studia Scientiarum Mathematicarum Hungarica
Authors: Sanka Balasuriya, Igor Shparlinski, and Daniel Sutantyo

We give upper bounds for sums of multiplicative characters modulo an integer q ≧ 2 with the Euler function ϕ ( n ) and with the shifted largest prime divisor P ( n ) + a of integers nx .

Restricted access

# Prime divisors of palindromes

Periodica Mathematica Hungarica
Authors: William D. Banks and Igor E. Shparlinski

## Summary

In this paper, we study some divisibility properties of palindromic numbers in a fixed base \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $g\ge 2$ \end{document}. In particular, if \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} ${\mathcal P}_L$ \end{document} denotes the set of palindromes with precisely \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $L$ \end{document} digits, we show that for any sufficiently large value of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $L$ \end{document} there exists a palindrome \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n\in{\mathcal P}_L$ \end{document} with at least \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(\log\log n)^{1+o(1)}$ \end{document} distinct prime divisors, and there exists a palindrome \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n\in{\mathcal P}_L$ \end{document} with a prime factor of size at least \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(\log n)^{2+o(1)}$ \end{document}.

Restricted access