Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Igor Shparlinski x
Clear All Modify Search
Restricted access

Abstract  

We obtain a new lower bound on the number of prime divisors of integers whose g-ary expansion contains a fixed number of nonzero digits.

Restricted access

Abstract  

We estimate multiplicative character sums over the integers with a fixed sum of binary digits and apply these results to study the distribution of products of such integers in residues modulo a prime p. Such products have recently appeared in some cryptographic algorithms, thus our results give some quantitative assurances of their pseudorandomness which is crucial for the security of these algorithms.

Restricted access
Authors: Sanka Balasuriya and Igor Shparlinski

Abstract  

Let χ be a primitive multiplicative character modulo an integer m ≥ 1. Using some classical bounds of character sums, we estimate the average value of the character sums with subsequence sums

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$T_m (\mathcal{S},\chi ) = \sum\nolimits_{\mathcal{I} \subseteq \{ 1, \ldots ,N\} } {\chi (\sum\nolimits_{i \in \mathcal{I}} {s_i } )}$$ \end{document}
taken over all N-element sequences S = (s 1, …, s N) of integer elements in a given interval [K + 1, K + L]. In particular, we show that T m(S, χ) is small on average over all such sequences. We apply it to estimating the number of perfect squares in subsequence sums in almost all sequences.

Restricted access
Authors: Sanka Balasuriya, Igor Shparlinski and Daniel Sutantyo

We give upper bounds for sums of multiplicative characters modulo an integer q ≧ 2 with the Euler function ϕ ( n ) and with the shifted largest prime divisor P ( n ) + a of integers nx .

Restricted access
Authors: William D. Banks and Igor E. Shparlinski

Summary  

In this paper, we study some divisibility properties of palindromic numbers in a fixed base \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $g\ge 2$ \end{document}. In particular, if \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} ${\mathcal P}_L$ \end{document} denotes the set of palindromes with precisely \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $L$ \end{document} digits, we show that for any sufficiently large value of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $L$ \end{document} there exists a palindrome \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n\in{\mathcal P}_L$ \end{document} with at least \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(\log\log n)^{1+o(1)}$ \end{document} distinct prime divisors, and there exists a palindrome \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n\in{\mathcal P}_L$ \end{document} with a prime factor of size at least \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(\log n)^{2+o(1)}$ \end{document}.

Restricted access