Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Ildikó Nyilasi x
  • Refine by Access: All Content x
Clear All Modify Search

The separation of chromosome-size DNA molecules by pulsed-field gel electrophoresis (PFGE) has become a well-established technique in recent years. Although it has very wide-ranging applications, it made a real breakthrough for fungal genome analysis. Because of the small size of fungal chromosomes, their investigation was not possible earlier. Different PFGE approaches allowed the separation of DNA molecules larger than 10 megabase pairs in size, and electrophoretic karyotypes for numerous previously genetically uncharacterized fungal species could be established. This review discusses the applicability of these electrophoretic karyotypes for the investigation of genome structure, for strain identification and for species delimitation.

Restricted access
Acta Microbiologica et Immunologica Hungarica
Authors:
Ildikó Nyilasi
,
T. Papp
,
M. Takó
,
Erzsébet Nagy
, and
Cs. Vágvölgyi

Iron is an essential nutrient for most organisms because it serves as a catalytic cofactor in oxidation-reduction reactions. Iron is rather unavailable because it occurs in its insoluble ferric form in oxides and hydroxides, while in serum of mammalian hosts is highly bound to carrier proteins such as transferrin, so the free iron concentration is extremely low insufficient for microbial growth. Therefore, many organisms have developed different iron-scavenging systems for solubilizing ferric iron and transporting it into cells across the fungal membrane. There are three major mechanisms by which fungi can obtain iron from the host: (a) utilization of a high affinity iron permease to transport iron intracellularly, (b) production and secretion of low molecular weight iron-specific chelators (siderophores), (c) utilization of a hem oxygenase to acquire iron from hemin. Patients with elevated levels of available serum iron treated with iron chelator, deferoxamine to remedy iron overload conditions have an increased susceptibility of invasive zygomycosis. Presumably deferoxamine predisposes patients to Zygomycetes infections by acting as a siderophore. The frequency of zygomycosis is increasing in recent years and these infections respond very poorly to currently available antifungal agents, so new approaches to develop strategies to prevent and treat zygomycosis are urgently needed. Siderophores and iron-transport proteins have been suggested to function as virulence factors because the acquisition of iron is a crucial pathogenetic event. Biosynthesis and uptake of siderophores represent possible targets for antifungal therapy.

Restricted access
Restricted access

The complete ITS (internal transcribed spacer) region coding the ITS1, the ITS2 and the 5.8S rDNA was amplified by polymerase chain reaction from two strains of Gilbertella persicaria, six strains in the Mucoraceae (Mucor piriformis, M. rouxii, M. circinelloides, Rhizomucor miehei, R. pusillus and R. tauricus) and four strains representing three species of the Choanephoraceae (Blakeslea trispora, Choanephora infundibulifera and Poitrasia circinans). Sequences of the amplified DNA fragments were determined and analysed. G. persicaria belongs to the monogeneric family (Gilbertellaceae), however, originally it was described as Choanephora persicaria. The goal of this study was to reveal the phylogenetic relationship among fungi belonging to Gilbertellaceae, Choanephoraceae and Mucoraceae. Our results support that the “intermediate” position of this family is between Choanephoraceae and Mucoraceae.

Restricted access

The in vitro antifungal activity of different statins and the combinations of the two most effective ones (fluvastatin and rosuvastatin) with amphotericin B were investigated in this study on 6 fungal isolates representing 4 clinically important genera, namely Absidia, Rhizomucor, Rhizopus and Syncephalastrum . The antifungal effects of statins revealed substantial differences. The synthetic statins proved to be more effective than the fungal metabolites. All investigated strains proved to be sensitive to fluvastatin. Fluvastatin and rosuvastatin acted synergistically and additively with amphotericin B in inhibiting the fungal growth in clinically available concentration ranges. Results suggest that statins combined with amphotericin B have a therapeutic potential against fungal infections caused by Zygomycetes species.

Restricted access
Restricted access