# Search Results

## You are looking at 1 - 4 of 4 items for

• Author or Editor: Imre Bárány
• Refine by Access: All Content
Clear All Modify Search

# On a question of V. I. Arnol'd

Acta Mathematica Hungarica
Author: Imre Bárány

## Abstract

We show by a construction that there are at least exp {cV (d−1)/(d+1)} convex lattice polytopes in ℝd of volume V that are different in the sense that none of them can be carried to an other one by a lattice preserving affine transformation.

Restricted access

# A note on the size of the largest ball inside a convex polytope

Periodica Mathematica Hungarica
Authors: Imre Bárány and Nándor Simányi

## Summary

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $m>1$ \end{document} be an integer, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $B_m$ \end{document} the set of all unit vectors of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\Bbb R^m$ \end{document} pointing in the direction of a nonzero integer vector of the cube \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $[-1,\,1]^m$ \end{document}. Denote by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $s_m$ \end{document} the radius of the largest ball contained in the convex hull of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $B_m$ \end{document}. We determine the exact value of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $s_m$ \end{document} and obtain the asymptotic equality \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $s_m\sim\frac{2}{\sqrt{\log m}}$ \end{document}.

Restricted access

# Planar point sets with a small number of empty convex polygons

Studia Scientiarum Mathematicarum Hungarica
Authors: Imre Bárány and Pável Valtr

A subset A of a finite set P of points in the plane is called an empty polygon, if each point of A is a vertex of the convex hull of A and the convex hull of A contains no other points of P. We construct a set of n points in general position in the plane with only ˜1.62n 2 empty triangles, ˜1.94n 2 empty quadrilaterals, ˜1.02n 2 empty pentagons, and ˜0.2n 2 empty hexagons.

Restricted access

# Covering lattice points by subspaces

Periodica Mathematica Hungarica
Authors: Imre Bárány, Gergely Harcos, János Pach, and Gábor Tardos
Restricted access