Search Results
You are looking at 1 - 10 of 12 items for
- Author or Editor: István Pócsi x
- Refine by Access: All Content x
Hydrolytic enzyme production is typical of the autolysis in filamentous fungi; however, less attention has been given to the physiological role of the enzymes. Here, the aim was to investigate the possible relation of the chitinolytic enzymes to the changes in the biomass in some filamentous fungi of high importance for pharmaceutical or food industry. In Penicillium and Aspergillus filamentous fungi, which showed different characteristics in submerged cultures, the growth and biomass decline rates were calculated and correlated to the chitinase and N-acetyl-β-D-glucosaminidase enzyme productions. Correlation was found between the biomass decrease rate and the chitinase level at the stationary growth phase; while chitinase production covariates negatively with N-acetyl-β-D-glucosaminidase activities. The chitinase production and the intensive autolysis hindered the production of N-acetyl-β-D-glucosaminidase and, therefore, could hinder the cell death in the cultures.
Fungal toxins are secondary metabolites, in which many of them were mycotoxins, affecting eukaryotic cells with a broad range of structural and functional variety contributing to the multitude of their classification. This refers to the harmful genotoxic (mutagenic, teratogenic, and carcinogenic) effects of mycotoxins on the one hand, and their cytocidic and antineoplastic properties on the other hand. This “double edged sword” effect could be utilized against the spread of tumors in older patients when the survival is much more important than the mutagenic side effects. To decide which fungal toxins could be used as combined cytotoxic and antimetastatic agents, mycotoxins were divided into three categories: (a) highly genotoxic (mutagenic, teratogenic, and carcinogenic), (b) adversely toxic, and (c) antitumorigenic agents. Highly cytotoxic mycotoxins with tolerable side effects, combined with an antineoplastic character, could be potential candidates against metastasis. From the structure–function relationship of antimetastatic mycotoxins, only general conclusions have been drawn. The presence of ring structures containing heteroatoms, functional groups, and the cumulative presence of oxygen atoms contributed to the oxidative stress and cytotoxicity of mycotoxins. The preselection of mycotoxins excluded category (a), and only the categories (b) and (c) were considered to be potential agents against the metastatic spread of abdominal tumors in rodent metastatic tumor experiments.
Relative transcriptions of Aspergillus nidulans dug1-3 (orthologes of Saccharomyces cerevisiae DUG — deficient in utilization of glutathione — pathway genes) and ggtA encoding γ-glutamyl transpeptidase were studied under conditions inducing glutathione degradation. GgtA was induced in all cases when glutathione levels decreased, but addition of yeast extract, which moderated glutathione degradation, enhanced its induction. Although dug2 showed constitutive transcription, dug1 and dug3 were induced by carbon and nitrogen starvation and yeast extract did not caused significant changes in their relative transcription. The in silico reconstructed DUG pathway of A. nidulans is a promising candidate for cytosolic GSH degradation induced by carbon/nitrogen stress.
Extracellular proteinase production induced by carbon starvation was studied in a series of heterotrimeric G protein signaling pathway mutants of Aspergillus nidulans . All the mutants tested — including Δ fadA (G α ), ΔsfaD (G β ), ΔgpgA (G γ ) and ΔsfgA (regulator of FadA signaling) — showed an elevated proteinase production after glucose depletion. Our results strongly support the view that during growth, FadA/SfaD/GpgA G protein signaling inhibits proteinase production via both G α and G βγ subunits, and all conditions, which are not sufficient to support vegetative growth and, hence, inhibit this type of G protein signaling, elevate extracellular proteinase activities.
Glutathione (g-L-glutamyl-L-cysteinyl-glycine; GSH) shares structural similarities with the b-lactam biosynthetic intermediate ACV-tripeptide {d-(L-a-aminoadipyl)-L-cysteinyl-D-valine}. Not surprisingly, GSH has been reported to inhibit the b-lactam biosynthetic machinery quite effectively and, hence, strategies to decrease the intracellular GSH concentrations without influencing negatively the physiological status of idiophasic mycelia would attract industrial interests. Here we present a detailed map of the GSH metabolic network of P. chrysogenum and show a promising way to keep the GSH pool selectively down under penicillin producing conditions. This procedure includes a well-controlled and transient lowering of pH at the beginning of the production phase, and it relies on the GSH-dependent detoxification of the protonophore penicillin side-chain precursors phenoxyacetic acid (POA) and phenylacetic acid (PA). Encouraging preliminary fed-batch fermentation experiments have been performed to test this technological proposal. Interestingly, the mechanism of the activation of POA and PA to the appropriate CoA derivatives has remained yet to be answered but the involvement of GSH seems to be rather unlikely in this case. Our data also challenge the hypothesis that the formation of different kinds of penicillins would be an alternative to GSH-dependent detoxification processes in P. chrysogenum.
New approaches for treatment of invasive fungal infections are necessary to cope with emerging resistant fungal pathogens of humans. In this paper, three different strategies are presented and evaluated to find new-type antifungal drugs and their targets. While experimental data obtained with potent chitinase inhibitors, e.g. allosamidin, and small-size antifungal proteins of fungal origin are encouraging more efforts are needed to verify and exploit the possible involvement of intracellular thiols, e.g. glutathione, and their metabolic anzymes in the pathogenesis of mycoses caused by dimorphic fingi. Chitinase inhibitors seem to hinder the cell separation of yeasts and the fragmentation of filamentous fungi quite effectively and, hence, they may be implicated in future therapies of systemic mycoses. In addition, small-size antifungal proteins possessing a broad inhibition spectrum may also provide us with promising new agents for the treatment of different kinds of (e.g. cutaneous) fungal infections.
Stress sensitivity of three related phytopathogenic Fusarium species (Fusarium graminearum, Fusarium oxysporum and Fusarium verticillioides) to different oxidative, osmotic, cell wall, membrane, fungicide stressors and an antifungal protein (PAF) were studied in vitro. The most prominent and significant differences were found in oxidative stress tolerance: all the three F. graminearum strains showed much higher sensitivity to hydrogen peroxide and, to a lesser extent, to menadione than the other two species. High sensitivity of F. verticillioides strains was also detectable to an azole drug, Ketoconazole. Surprisingly, no or limited differences were observed in response to other oxidative, osmotic and cell wall stressors. These results indicate that fungal oxidative stress response and especially the response to hydrogen peroxide (this compound is involved in a wide range of plant-fungus interactions) might be modified on niche-specific manner in these phylogenetically related Fusarium species depending on their pathogenic strategy. Supporting the increased hydrogen peroxide sensitivity of F. graminearum, genome-wide analysis of stress signal transduction pathways revealed the absence one CatC-type catalase gene in F. graminearum in comparison to the other two species.
Yeast protein sequence-based homology search for glutathione (GSH) metabolic enzymes and GSH transporters demonstrated that Aspergillus nidulans has a robust GSH uptake and metabolic system with several paralogous genes. In wet laboratory experiments, two key genes of GSH metabolism, gcsA, and glrA, encoding γ-l-glutamyl-l-cysteine synthetase and glutathione reductase, respectively, were deleted. The gene gcsA was essential, and the ΔgcsA mutant required GSH supplementation at considerably higher concentration than the Saccharomyces cerevisiae gsh1 mutant (8–10 mmol l−1 vs. 0.5 μmol l−1). In addition to some functions known previously, both genes were important in the germination of conidiospores, and both gene deletion strains required the addition of extra GSH to reach wild-type germination rates in liquid cultures. Nevertheless, the supplementation of cultures with 10 mmol l−1 GSH was toxic for the control and ΔglrA strains especially during vegetative growth, which should be considered in future development of high GSH-producer fungal strains. Importantly, the ΔglrA strain was characterized by increased sensitivity toward a wide spectrum of osmotic, cell wall integrity and antimycotic stress conditions in addition to previously reported temperature and oxidative stress sensitivities. These novel phenotypes underline the distinguished functions of GSH and GSH metabolic enzymes in the stress responses of fungi.
PAF, which is produced by the filamentous fungus Pencicillium chrysogenum, is a small antifungal protein, triggering ROS-mediated apoptotic cell death in Aspergillus nidulans. In this work, we provide information on the function of PAF in the host P. chrysogenum considering that carbon-starving cultures of the Δpaf mutant strain showed significantly reduced apoptosis rates in comparison to the wild-type (wt) strain. Moreover, the addition of PAF to the Δpaf strain resulted in a twofold increase in the apoptosis rate. PAF was also involved in the regulation of the autophagy machinery of this fungus, since several Saccharomyces cerevisiae autophagy-related ortholog genes, e.g. those of atg7, atg22 and tipA, were repressed in the deletion strain. This phenomenon was accompanied by the absence of autophagosomes in the Δpaf strain, even in old hyphae.
Iron is an essential element for all microorganisms. Bacteria and fungi produce versatile siderophores for binding and storing this essential transition metal when its availability is limited in the environment. The aim of the study was to optimize the fermentation medium of Aspergillus fumigatus for siderophore production. Triacetyl-fusarinine C and ferricrocin yields were dependent on glucose and glycine supplementations as well as the initial pH of the culture media. The optimal fermentation medium for triacetylfusarinine C production contained 8% glucose, 0.4% glycine and the initial pH was set to 5.9. Meanwhile, maximal ferricrocin yields were recorded in the presence of 10% glucose, 0.5% glycine and at an initial pH of 7.4. Under optimized fermentation conditions, the yields for triacetylfusarinine C and ferricrocin increased up to 2.9 g/l culture medium and 18.9 mg/g mycelium, respectively.