Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Iwona Wilińska x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Abstract

The influence of three mineral additives, i.e. fly ashes from pulverized combustion and from fluidized combustion of hard coal as well as Portland cement, on early hydration (up to 28th day) of calcium aluminate cement was investigated. Cement pastes containing 0, 5 and 25 wt% of additives were studied by the use of calorimetry, thermal analysis and infrared spectroscopy methods. It was confirmed that hydration of calcium aluminate cement is closely dependent on the type of addition and its amount. The influence of additives of different properties on cement hydration was discussed basing on received results and other literature reports.

Open access

Abstract  

The aim of this work is to compare the influence of addition of waste aluminosilicate catalyst on the initial periods of hydration of different cements, i.e. calcium aluminate cements of different composition and Portland cement, basing on the calorimetric studies. Cement pastes containing up to 25 mass% of additive were studied, where the water/(cement+additive) ratio was 0.5. An attempt was undertaken to explain the mechanism of action of introduced aluminosilicate in the system of hydrating cement, particularly in the case of calcium aluminate cement pastes. It was found that the presence of fine-grained additive caused in all studied cases the increase of the amount of released heat in the first period after the addition of water. In the case of aluminate cements with aluminosilicate addition, a significant reduction of induction time and faster precipitation of hydration products were observed compared to the reference sample (without additive). In the experimental conditions, the additive caused the acceleration of aluminate cements hydration, and the mechanism of its action is probably complex and can encompass: nucleative action of small grains and formation of new chemical compounds.

Restricted access