Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: János Csizmeg x
  • All content x
Clear All Modify Search

Numerous accumulations of CO2 and nitrogen-rich natural gas are known in the hot Pannonian Basin System (PBS), where even the mixture of these two fluids is a common phenomenon. The Danube Basin, part of the PBS, is characterized by the predominance of CO2 and nitrogen-rich natural gas over “normal” natural gas. The multistacked Répcelak and Mihályi gas accumulations (southern, Hungarian part of the Danube Basin) display an upward increase of nitrogen-rich natural gas at the expense of CO2. This study, using the abundant public data, the published results and the new biomarker data obtained from oil traces, attempts to explain the formation of these multistacked accumulations. A synoptic view of the vertical changes in gas composition, the maturation history of the basin and its basement, the chronology of the Neogene basaltic volcanism and the biomarker pattern of the oil traces resulted in the recognition of the metasedimentary origin of the nitrogen-rich natural gas and in a relative chronology of the mixing of the two gases and the oil.

Restricted access

The Little Plain Basin is one of the largest units in the Pannonian Basin System. Its continuation in Slovakia is called the Danube Basin. The Little Plain Basin is one of the most underexplored areas in Hungary. Based on archival geologic and geophysical data the lithostratigraphic composition of the area is controversial. The significance of the area is increased by the known Neogene and the supposed basement (Paleozoic and Mesozoic) hydrocarbon systems in Hungary and in Slovakia.

The purpose of this study is to identify the exact age, facies, geologic formations and possible source rocks of the Triassic section penetrated by the Gyõrszemere-2 well in the Little Plain Basin.

Based on new facies and paleontological results it can be stated that two Triassic sequences are identified in the well, separated by fault breccia. A carbonate sequence was deposited between the Induan and Early Anisian and above that a homogeneous recrystallized dolomite appears, the age of which is unknown.

The following formations were encountered, from base upward:

Arács Marl Fm. (3,249.5–3,030 m), silty marl with ooids, bivalves, gastropods and ostracode shells. Occasionally layers of angular quartz grains in large quantities appear. Postcladella kahlori and Spirobis phlyctaena indicates Induan (Early Triassic) age.

Köveskál Dolomite Fm. (3,030–2,790 m), rich in ooids and also containing anhydrite. The Glomospira and Glomospirella dominance indicates an age interval between Olenekian and earliest Anisian age.

Fault breccia (2,790–2,690 m) separating the Köveskál and overlying dolomites.

Upper dolomite (2,690–2,200 m): homogeneous, saccharoidal, and totally recrystallized. The age is unknown.

The low TOC values of the supposed source rock interval (marl between 3,249.5 and 3,030 m) indicate poor hydrocarbon potential.

Restricted access