Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: József Felfödi x
  • Refine by Access: All Content x
Clear All Modify Search

The acoustic response method is one of the most important dynamic methods used for assessment of the mechanical texture of different fruits and vegetables. The method is based on the mechanical excitation of the sample and the assessment of its resonant frequency. Different approaches are known for the interpretation of the vibration behavior of the samples having definite shapes. According to the most widely used interpretation, the stiffness of the sample ( s ) is dependent on the resonant frequency ( f ) and the mass ( m ) of the sample. The aim was to extend the acoustic response method to typically non-spherical samples (carrot, cucumber, etc.) to find a correct interpretation of the behavior of the sample and to introduce a stiffness coefficient suitable for characterization of the mechanical properties of a long shaped sample. According to Finite Element Modeling and experimental tests on carrot samples a close correlation was found between the resonant frequency and the effective length of the sample in a given shape range. A principally new stiffness coefficient was proposed for long shaped samples. It was found to be suitable for the characterization of the hardness of the vegetables in a wide size range.

Restricted access