Search Results

You are looking at 1 - 10 of 46 items for

  • Author or Editor: József Horváth x
  • All content x
Clear All Modify Search

Összefoglalás

A burgonya (Solanum tuberosum) Magyarországon a 17. század második felében vált ismertté. Vizsgálata a növény botanikai és gazdasági tulajdonságainak megismerésével kezdődött. A korai, botanikai és rendszertani ismereteket a talajművelési, trágyázási, gyomirtási és virágzásbiológiai megfigyelések követték. A dohány mozaik vírus felfedezését követően, a 20. század elején a magyarországi burgonyakutatás figyelme a burgonya leromlásával kapcsolatos vizsgálatokra terjedt ki. Ennek során megállapítást nyert, hogy a burgonya leromlásában a vírusok, elsősorban a burgonya levélsodródás vírus játssza a fő szerepet. Ezeknek a vizsgálatoknak eredményeképpen az 1930-as, de leginkább az 1950-es években intenzív burgonyanemesítői és burgonyavirológiai kutatás kezdődött el. A burgonyanemesítés rezisztens vad Solanum fajok, kultúrfajok és fajták közötti keresztezésekkel, milliós nagyságrendű hibridek előállításával és kiválogatásával kezdődött. A burgonyavírus kutatás a Magyarországon előforduló vírusok elterjedésének megállapítására, a vírusok identifikálására és a védekezés lehetőségeinek tanulmányozására terjedt ki. A kutatás intenzitására nagy hatással volt az 1950-es évek második felében a külföldi fajtákkal behurcolt burgonya Y-vírus dohány érnekrózis törzs, amely az akkori fajták nagy részét elpusztította. A burgonyanemesítésben előtérbe került a vírus rezisztenciára nemesítés, amely mind a mai napig a legfontosabb célkitűzés. A korai nemesítői munkának köszönhetően olyan vírusok (burgonya X-vírus, burgonya A-vírus, burgonya S-vírus, burgonya M-vírus), valamint fitoftóra (Phytophthora infestans) és fonálféreg (Globodera rostochiensis) rezisztens fajták (pl. Szignál, Somogyi Sárga, Somogyi Kifli, Magyar Rózsa) jöttek létre, amelyek rezisztencia tekintetében felülmúlták a korábban előállított fajtákat. A nemesítési bázis ezt követően olyan újabb vad Solanum fajokra (Solanum gourlayi, S. tariense, S. berthaultii, S. megistacrolobum, S. sucrense, S. sparsipilium) terjedt ki, amelyekkel növelni lehetett a genetikai alapot. Az új vírusok és vírustörzsek [burgonya Y-vírus gumó nekrotikus gyűrűsfoltosság törzse, rendellenes (anomalous) törzse, a burgonya S-vírus és a burgonya M-vírus újabb törzsei], valamint a burgonya sztolbur- és boszorkányseprűsödés fitoplazma, a fitoftóra A1 és A2 párosodási típusa, baktériumok (Erwinia carotovora ssp. carotovora, E. chrysanthemi, Ralstonia solanacearum), fonálférgek (Globodera rostochiensis, G. pallida), új levéltetű vírusvektorok (Hayhurstia atriplicis, Schizapis graminum, Brevicoryne brassicae, Hyperomyzus pallidus, Tetraneura ulmi), fitoplazma kabóca vektorok (Hyalesthes obsoletus, Macrosteles laevis), tripsz vírusvektorok (Thrips tabaci, Frankliniella occidentalis) magyarországi megjelenése mind a nemesítői, mind a növénykórtani, vektorológiai és növényvédelmi kutatást felgyorsította. Ennek a munkának köszönhetően ma már olyan burgonyafajták (Boró, Ciklámen, Démon, Góliát, Hópehely, Katica, Kánkán, Lorett, Pannónia, Rebeka, Riója, Sarolta, Sarpo Axona, Sarpo Mira, Sarpo Una, Vénusz Gold, White Lady stb.) állnak rendelkezésre, amelyek a fontosabb károsítókkal szemben rezisztensek, jó termőképességűek és étkezési szempontból is kiválóak. Az utóbbi években Magyarországon kimutatott új burgonyapatogén vírusok és vírustörzsek (lucerna mozaik vírus, uborka mozaik vírus, beléndek mozaik vírus, Chenopodium mozaik vírus, paradicsom bronzfoltosság vírus, paradicsom mozaik vírus stb.) megjelenése, valamint az egyre növekvő burgonyaimport következtében potenciális veszélyt jelentő vírusok (andoki burgonya látens vírus, andoki burgonya foltosság vírus, burgonya T-vírus, pepino mozaik vírus stb.) és egyéb károsítók (pl. Erwinia chrysanthemi, E. solanacearum) – amelyek a holland burgonyaimport következtében 1986. évtől Magyarországon is jelen vannak – elleni rezisztenciára nemesítés is fontos feladata a burgonyanemesítésnek. A magyarországi vírusrezisztencia vizsgálataink az elmúlt évtizedekben 121 vad Solanum faj 300 származék 14 vírussal szembeni magatartásának vizsgálatára terjedtek ki. Az utóbbi években identifikált burgonyapatogén vírusokkal és veszélyt jelentő, potenciális vírusokkal szemben N-génen (hipeszenzitív reakció) alapuló rezisztenciát mutattunk ki a Solanum alandiae (uborka mozaik vírus), S. albicans (andoki burgonya foltosság vírus, beléndek mozaik vírus), S. demissum (lucerna mozaik vírus, uborka mozaik vírus, beléndek mozaik vírus), S. laxissimum (beléndek mozaik vírus, burgonya T-vírus), S. mochicense, S. neorossii, S. paucissectum (lucerna mozaik vírus) és a S. stoloniferum (lucerna mozaik vírus, uborka mozaik vírus, beléndek mozaik vírus) egyes származékaiban. R-génen alapuló extrém rezisztenciát (immunitás) a Solanum fernandezianum (uborka mozaik vírus), S. stoloniferum (lucerna mozaik vírus, uborka mozaik vírus, beléndek mozaik vírus) és a S. violacei-marmoratum (lucerna mozaik vírus, uborka mozaik vírus) egyes származékaiban állapítottunk meg. Az utóbbi két évtizedben eredményeket értünk el a biotechnológiai módszerek alkalmazásával. A nem gumóképző vad Solanum brevidens és egyes kultúrfajták (Grácia, Rioja, White Lady) között előállított szomatikus hibridek visszakeresztezéses nemesítése eredményeképpen burgonya levélsodródás vírus, burgonya Y-vírus és Erwinia carotovora ssp. atroseptica rezisztens hibridek előállítására került sor. Régi, közkedvelt, de vírusfogékony magyar burgonyafajták (Gülbaba, Kisvárdai Rózsa, Somogyi Kifli) genetikai módszerekkel történő vírusmentesítése napjaink burgonyakutatásának fontos része. A burgonya Y-vírus rezisztencia-génhez kapcsolt genetikai markerek azonosítsa és a Solanum stoloniferum vad burgonyából származó Rysto-gént tartalmazó kromoszóma régió molekuláris jellemzése az utóbbi évek molekuláris biológiai kutatásainak fontos eredménye. Az elmúlt években a burgonya Y-vírus gumónekrózist előidéző, ún. NTN-törzs molekuláris jellemzése és primér struktúrájának meghatározása is megtörtént. Jelenleg hasonló kutatásokat végzünk a burgonyapatogén paradicsom bronzfoltosság vírussal kapcsolatban. Az Európai Unióhoz (EU) csatlakozást követően a magyarországi burgonyakutatás eredményességét alapvetően az határozza meg a jövőben, hogy a hazai kedvezőtlen éghajlati adottságok (magas hőmérséklet, rossz eloszlású és kevés csapadék) és a klímaváltozás ellenére sikerül-e a viszonylag alacsony (20–25 t/ha) és jelentősen ingadozó termésátlagokat fokozni, a magas termelési költségeket (20–25 Ft/kg) csökkenteni, és a versenyképességet ez által javítani. A legfontosabb szempont a biotikus és abiotikus tényezőkkel szemben olyan stresszrezisztens vonalak, hibridek, fajták előállítása, amelyek a burgonya termőképességének fokozásához és étkezési minőségének javításához vezetnek. Ezt a célkitűzést azonban csak a hazai kutatástámogatás fokozásával, hazai és nemzetközi tudományos együttműködésekkel lehet megvalósítani.

Restricted access

A hajtatás során a túlzott műtrágya-használat problémákat okozhat. Célul tűz-tük ki az Amalgerol talaj- és növénykondicionáló preparátum hatásának feltárását nagy sótartalmú talajon paprikahajtatásban. A preparátumot in vivo (termesztési), valamint in vitro (laboratóriumi) körülmények között vizsgáltuk három éven keresz-tül (2011–2013). Laboratóriumi körülmények között a talaj kémhatását, továbbá, a tápanyag, humusz-, kalcium-karbonát-, só-, valamint nátriumtartalmát vizsgáltuk. Termesztési körülmények között a növényekre gyakorolt hatást értékeltük mono-kultúrában. A kisparcellás kísérlethez két kezelést (kezelt, ill. kezeletlen kontroll) állítottunk be.

A preparátumos kezelések hatására szignifikánsan növekedett a talaj foszfortar-talma, azonban a készítmény nem növelte a talaj kálium-, magnézium-, kén- és kalciumtartalmát. A termék használata feltételezhetően növeli a talaj mikroelem valamint humusztartalmát. Feltételezéseink szerint a preparátum pozitív hatást gya-korol a talaj mikroflórájára, ennek köszönhetően pedig kedvező folyamatok (pl. foszfor feltáródás, humusztartalom növekedés) alakulnak ki a talajban. Úgy véljük, hogy szervestrágyázással kombinálva a preparátum hatékonysága növelhető. A készítmény kedvezően befolyásolta a termések mennyiségét és minőségét, külö-nösen az értékesíthető termések tömegét növelte jelentősen. A preparátum a termé-sek darabosságára is kedvező hatású volt azáltal, hogy növekedett a minőségi extra valamint az I. osztályú termések átlagtömege. A preparátumos kezelések hatására javult a növényi kondíció és az általános ellenálló képesség.

Feltevésünk szerint a termék szinergista módon indukálja a gyökér-gomba ún. arbuszkuláris mikorrhiza (AMF) gomba kapcsolatokat. A mikorrhizáció eredmé-nyeként pedig a növény nagyobb tápanyag- és vízfelvétele képes, ezáltal növekszik a növények termésprodukciója, valamint javul a stressztűrő-képessége. Tapasztala-taink alapján úgy látjuk, hogy a preparátum hatékonyan használható a mezőgazda-sági termelésben.

Köszönettel tartozunk a Cheminova FMC magyarországi vállalatának, amely kísér-letünk lefolytatásához anyagi támogatást és szaktanácsadást nyújtott.

Restricted access

Kedvezőbb műtéti eredmények „onlay” hálóval, mint „sublay” helyzetben beültetettel

Varrattal, illetve hálóbeültetéssel történő hasfal-rekonstrukció prospektív, randomizált, multicentrikus vizsgálata – ötéves utánkövetés eredményei

Magyar Sebészet
Authors: György Wéber, József Baracs, and Örs Péter Horváth

Absztrakt

Bevezetés: A hasfal rekonstrukciójára számos műtéti megoldás ismert, az eredmények azonban meglehetősen szerények és ellentmondásosak. Vizsgálatunk célja a hasfali sérvek varrattal, illetve hálóbeültetéssel végzett műtéti kezelésének valamint az onlay, illetve sublay helyzetben beültetett hálók műtéti eredményeinek összehasonlítása. Anyag és módszerek: A 2002-ben kezdődött multicentrikus, prospektív, randomizált vizsgálatban az ország 20 sebészeti osztályán (lásd Függelék) 953 beteg hasfali rekonstrukcióját végeztük el. A betegeket, a sérv nagysága szerint két csoportba osztottuk: A csoport (n = 494): a sérvkapu nagysága 5–25 cm2 (kis sérv) és B csoport (n = 459): a sérvkapu nagyobb, mint 25 cm2 (nagy sérv). A randomizálásnak megfelelően az A csoportban a hasfal-rekonstrukció varrattal (n = 247), illetve hálóbeültetéssel (sublay n = 247) történt. A 25 cm2-nél nagyobb sérvek esetében (B csoport) hálóbeültetés történt, random módon sublay (n = 235), illetve onlay technikával (n = 224). Az utánkövetés öt évig tartott, és 2009 márciusában fejeződött be. Eredmények: Az ötéves utánkövetés során 219 beteget zártunk ki a vizsgálatból, így 734 beteg (a randomizált betegek 77%-a) adatait tudtuk elemezni. Az A csoport varrattal kezelt 184 betegénél 50 esetben (27%), míg a hálóval kezelt 180 betegénél 15 esetben (8%) találtunk recidív sérvet, a különbség szignifikáns (p < 0,001). A nagy sérvek eseté-ben (B csoport) a 189 sublay meshnél 38 esetben (20%), míg a 181 onlay meshnél 22 esetben (12%) találtunk recidív sérvet, a különbség ugyancsak szignifikáns (p < 0,05). Következtetések: A hálóbeültetés jobb, mint a varrattal történő hasfal-rekonstrukció. A 25 cm2-nél nagyobb sérvek esetében – a szakmai vélekedéssel ellentétben – az „onlay” hálóval szignifikánsan jobbak a műtéti eredmények, mint a „sublay” helyzetben beültetett hálóval.

A randomizált vizsgálat ID száma NCT01018524 (www.ClinicalTrials.gov).

Restricted access

Abstract

Crystallization kinetics of β-nucleated isotactic polypropylene (β-iPP) under isothermal conditions were investigated by differential scanning calorimetry. iPP was nucleated by a trisamide derivative, namely tris-2,3-dimethyl-hexylamide of trimesic acid (TATA). In the presence of TATA possessing dual nucleating ability, the formation of the α- and β-form occurs simultaneously. An isothermal stepwise crystallization method is suggested in this study, which can separate the crystallization process of β- and α-iPP and consequently their crystallization kinetics can be evaluated separately. The results indicated that the mechanism of crystallization changes in temperature especially in the vicinity of the upper critical temperature of the formation of the β-phase. In addition, it was found that the ratio of the growth rates of β- and α-modification determines the characteristics of crystallization and influences the apparent rate constant of crystallization of both polymorphs.

Restricted access
Cereal Research Communications
Authors: József Horváth, András Takács, Katalin Farkas, Gabriella Kazinczi, and Richard Gáborjányi
Restricted access
Cereal Research Communications
Authors: András Takács, Gábor Jenser, Gabriella Kazinczi, and József Horváth
Restricted access
Cereal Research Communications
Authors: András Takács, Gabriella Kazinczi, József Horváth, and Mária Hadzsi
Restricted access
Cereal Research Communications
Authors: Gabriella Kazinczi, Péter Varga, András Takács, Mária Torma, and József Horváth
Restricted access
Magyar Sebészet
Authors: András Antal, Zoltán Kovács, József Varga, and László Horváth

Absztrakt

A betegek tartós anticoagulans kezelésére gyakran választjuk az acenocumarolt. A gyógyszer túladagolása esetén a szervezet különböző helyein bevérzés keletkezhet. Három betegünknél különleges helyen, a rectus abdominis területén figyeltük meg suffusiók kialakulását. A jelenség diagnosztikus nehézséget okozhat, mivel a panaszok kezdetekor a hasfal bőrén elszíneződés nem látszik. A kórok megállapítását az anamnaesisben szereplő tartós véralvadásgátló-szedés segíti. A tapintáskor észlelt nyomásérzékeny hasfali rezisztencia a gyanút fokozza. A magas INR a haemorrhagiás szövődmény lehetőségét támogatja. Egyszerű esetben a diagnózis az anamnaesis, a tapintás, az INR és az ultrahang alapján felállítható. A bonyolultabb esetek tisztázásában a CT segíthet, de egyik betegünknél csak laparoscopiával jutottunk pontos diagnózishoz. A csökkent plazma-prothrombinszintet K-vitamin adásával minden esetben normalizálni tudtuk.

Restricted access