Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: József Pálfy x
- Refine by Access: All Content x
Abstract
Palynology and palynofacies patterns of terrestrial Triassic/Jurassic boundary series of the South Hungarian Mecsek Mountains were studied in search of paleoenvironmental and vegetation changes and climatic signatures related to one of the major mass extinction events in Earth's history. Two selected and studied boreholes comprise continuous boundary sections and yield a diverse Late Rhaetian to Hettangian palynomorph assemblage. The most striking feature within the boundary interval is the series of cyclic short-term paleoenvironmental changes from fluvial/deltaic to swamp settings, as inferred from changes in palynomorph associations. However, increasing humidity is documented by a striking increase in trilete spores. These signatures display the response of terrestrial vegetation to regional and global environmental changes, although we found no clear evidence for a mass extinction as documented in the microflora.
Abstract
Although the Mesozoic rocks of the Transdanubian Range have been the subject of a multitude of different studies, mineralogical research is largely underrepresented. The clay mineralogy of Lower Jurassic (especially the Pliensbachian and Toarcian) strata was broadly investigated earlier; however, systematic high-resolution clay mineralogical studies remain scarce. Here we present a mineralogical study focusing on the Upper Pliensbachian strata of the Lókút-Hosszúárok section, located near the Eplény Manganese Ore Field. We identified dioctahedral smectite, randomly interstratified illite/smectite, illite as 10 Å phyllosilicate, quartz and cristobalite. Based on our new results we propose that the smectite was formed by aging of Mg or Fe hydroxide-silica precipitates. The smectite and cristobalite were presumably formed from the siliceous tests of radiolarians, whose abundance was controlled by a local upwelling system. The occurrence of Pliensbachian smectite in the Lókút outcrop shows similarities with the Úrkút smectites known from both Pliensbachian and Toarcian strata, which implies that similar processes controlled the sedimentation during the Pliensbachian as well as during the black (gray) shale-hosted ore accumulation in the Eplény and Úrkút basins.