Search Results

You are looking at 1 - 10 of 38 items for

  • Author or Editor: J. Criado x
  • Refine by Access: All Content x
Clear All Modify Search

The activation energy for thermal dehydroxylation in vacuum of alkaline-earth hydroxides has been calculated from thermogravimetric data. The experimental results of Mg(OH)2 Ca(OH)2 and Sr(OH)2 are in agreement with an unimolecular decay law and their activation energies are similar to the values of enthalpies of decomposition. In contrast, as the dehydroxylation process of Ba(OH)2 takes place in liquid phase and the BaO does not dissolve into the molten Ba(OH)2, a kinetic of zero order describes the reaction rate and the activation energy is lower than the enthalpy of decomposition.

Restricted access

The errors in the activation energies of solid-state reactions determined with the Piloyan method are more larger than those previously assumed in the literature. On the other hand, the errors in the kinetic parameters are strongly dependent on the kinetic law obeyed by the reaction. A theoretical explanation of this behaviour is given.

Restricted access

An analysis is made of the method proposed by Gorbachev for the kinetic study of non-isothermal transformations using the KEKAM equationα=1−exp(−kt n). It is demonstrated that the procedure cannot be used to determine either the kinetic exponentn or the activation energyE.

Restricted access

Abstract

The kinetic curves at infinite temperature for the solid-state reactions of the interface shrinkage type were drawn theoretically by taking account the particle size distribution in the sample mixture. The CRTA curves for the reactions with the particle size distribution can be drawn by utilizing the universal kinetic curves at infinite temperature. The proper kinetic treatment for the CRTA curves with the particle size distribution is discussed in connection with the property of the kinetic equation with respect to the particle size distribution. The present kinetic consideration is taken as a simulation for the reactions with a certain distribution in α among the reactant particles, produced preferably by the mass and heat transfer phenomena during the thermoanalytical measurements. The merit of the rate jump method by a single cyclic CRTA curve is also discussed on the basis of the present results.

Restricted access