Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: J. Fan x
  • All content x
Clear All Modify Search

Abstract  

A critical thermodynamic analysis of differential thermal calorimetry is reported herein to gain further insight into the phenomena leading to the reported differences between kinetic parameters extracted from isothermal DSC methods and those from dynamic DSC methods. The sources have been identified for the variations observed in the total heat of reaction as a function of the heating rate in dynamic DSC experiments. The analysis clearly indicates that these variations are, in fact, to be anticipated. The relationships necessary for extracting kinetic data from both isothermal and dynamic experiments are derived rigorously by resorting to classical thermodynamics.

Restricted access

Abstract  

The isothermal crystallization and subsequent melting behavior of one propylene homopolymer and three propylene-1-decene copolymers with different comonomer contents prepared by metallocene catalyst were studied using differential scanning calorimetry (DSC). It is found that the Avrami exponent of the propylene copolymers decreases gradually with the increase of comonomer content, from 3.0 for the propylene homopolymer to 1.4 for the copolymer with 7.83 mol% 1-decene units. Higher comonomer content also weakens the dependence of crystallization rate constant and crystallization halftime on temperature. Double melting peaks, which correspond to α and γ crystal phases, respectively, are observed for all copolymers under isothermal crystallization. The result shows that higher crystallization temperature is favorable to the segregation of α and γ crystal phases, resulting in higher proportion of γ crystal phase.

Restricted access

Summary  

Experimental crushed granite column breakthrough curves, using 99Tc as spike tracer and 3H as invariant tracer, were analyzed by different linear regression techniques. Dispersity of crushed granite and the retardation factor of 99TcO4 - on the crushed granite were determined simultaneously by one linear regression. Dispersity of crushed granite was also obtained with 3H as invariant tracer by the other linear regression. The dispersities found by spike source and invariant source methods are compared. Experimental results show that the dispersity found by the spike source method is close to that found by the invariant source method. This indicates that dispersity is only a characteristic of the dispersion medium.

Restricted access

Summary  

The adsorption of 99Tc on the adsorbers Fe, Fe2O3 and Fe3O4 was studied by batch experiments under aerobic and anoxic conditions. The effects of pH and CO3 2- concentration of the simulated ground water on the adsorption ratios were also investigated, and the valences of Tc in solution after the adsorption equilibrium were studied by solvent extraction. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 were determined. Experimental results have shown that the adsorption ratio of Tc on Fe decreases with the increase of pH in the range of 5-12 and increases with the decrease of the CO3 2- concentration in the range of 10-8M-10-2M. Under aerobic conditions, the adsorption ratios of 99Tc on Fe2O3 and Fe3O4 were not influenced by pH and CO3 2-concentration. When Fe was used as adsorbent, Tc existed mainly in the form of Tc(IV) after equilibrium and in the form of Tc(VII) when the adsorbent was Fe2O3 or Fe3O4 under aerobic conditions. The adsorption ratios of Tc on Fe, Fe2O3 and Fe3O4 decreased with the increase of pH in the range of 5-12 and increased with the decrease of the CO3 2- concentration in the range of 10-8M-10-2M under anoxic conditions. Tc existed mainly in the form of Tc(IV) after equilibrium when Fe, Fe2O3 and Fe3O4 was the adsorbent under anoxic conditions. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 are fairly in agreement with the Freundlich’s equation under both aerobic and anoxic conditions.

Restricted access

Abstract  

The sorption behavior of technetium on pyrrhotine was studied with batch experiments and diluted sulfuric acid (less than 2.88 mol/l) was used to dissolve the technetium adsorbed on pyrrhotine. A significant sorption of technetium on pyrrhotine was observed under aerobic and anaerobic conditions, and the sorption on the mineral was supposed to be due to the reduction of TcO4 - to insoluble TcO2 .nH2O. Sorbed technetium on the mineral could be desorbed by diluted sulfuric acid. The maximum desorption ratio under aerobic conditions was much higher than that of under anaerobic conditions, meanwhile, the desorption rates under anaerobic conditions were higher than that of under aerobic conditions in the initial stage of the experiments.

Restricted access

Abstract  

In order to measure 182Hf by accelerator mass spectrometry (AMS), a chemical procedure for separation of hafnium from tungsten has been developed by extraction chromatography. The extraction chromatographic behavior of hafnium and tungsten has been studied using tri-n-octylamine (TOA) as the stationary phase, HCl–H2O2 mixture and NH3·H2O as the mobile phase. The effects of H2O2 concentration, column loading and column dimensions are investigated. Hf and W with microgram amounts are successfully separated on a chromatographic column (Ø5 × 196 mm), on which Hf is hardly retained after completely eluted with 6 M HCl–1% H2O2 and W strongly adsorbed is then eluted with 3 M NH3·H2O. The decontamination factor for tungsten is 3.0 × 105 and the recovery of hafnium is better than 99% using a single column separation.

Restricted access

This study was designed to test the hypothesis that a medium-term simulated microgravity by tail-suspension (SUS) induces hypertrophic and atrophic changes in the common carotid artery and abdominal aorta with their innermost smooth muscle (SM) layers being most profoundly affected. The second purpose was to elucidate whether vascular local renin-angiotensin system (L-RAS) plays an important role in the differential remodeling of the two kinds of large arteries by examining the gene and protein expression of angiotensinogen (A O ) and angiotensin II receptor type 1 (AT1R) and their localization in the vessel wall. The results showed that SUS induced an increase in the media thickness of the common carotid artery due to hypertrophy of the four SM layers and a decrease in the total cross-sectional area of the nine SM layers of the abdominal aorta without significant change in its media thickness. Irrespective of the nature of remodeling, the most prominent changes were in the innermost layers. Immunohistochemistry, in situ hybridization, Western blot, and real time quantitative PCR analysis revealed that SUS induced an up- and down-regulation in A O and AT1R expression in the common carotid artery and abdominal aorta, respectively. In conclusion, our findings have demonstrated some special features in the structural adaptation of large elastic arteries due to a medium-term simulated microgravity.

Restricted access

The geographical patterns of tree species richness in forest communities have been studied widely, but little is known about the geographical variation of the estimated species richness and minimum areas using species-area curves. A differential technique based on the species-area relationships (SAR) was developed for estimating the minimum area (Amin) capturing 60- 80% of the species in each plot, which is an important characteristic of a forest community. The relationship between estimated species richness (ESR) from the SAR and the corresponding minimum area is described by the linear model ESR = 0.0051×Amin (R2 = 0.98, p < 0.0001). Both the ESR and the minimum area exhibit similar geographical variations with a significant increase along altitudinal and a decrease along latitudinal gradients. The spatial variations of the ESR were partitioned into three geographical components and their combined effects. Altitude accounted for 40% and 45% of the total variation in the ESR and the minimum area, respectively. While latitude accounted for 69% and 61% of the total variation in the ESR and the minimum area, respectively. Thus, latitude is the main determinant which influences the geographical variation of the ESR. As far as we know, this study presents the first report of the geographical patterns of the minimum area in temperate forests.

Restricted access

Trehalose dihydrate, on careful dehydration below its fusion point, retains its original crystal facets but becomes X-ray amorphous, an unusual example of direct crystal-to-glass transformation. From DSC studies, the glass obtained by this route seems to be of abnormally low enthalpy, but after an initial scan, the normal form of glass transition is exhibited, withT g=115‡C, a higher value than previously reported. We give a preliminary thermal and mechanical characterization of this material and find it to be a very fragile liquid. The highT g is shown to rationalize the exceptionally high water content of the trehalose+water solution that vitrifies at ambient temperature (i.e.T g=298 K), and hence helps explain its use by Nature as a desiccation protectant. The spontaneous vitrification of crystalline materials during desolvation is related to the phenomenology of pressure-induced or decompression-induced vitrification of crystals via the concept of limiting metastability.

Restricted access