Search Results

You are looking at 1 - 10 of 28 items for

  • Author or Editor: J. Filho x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Angra dos Reis/Itaguai region of the state of Rio de Janeiro, Brazil, is a very problematic area due to the instability of slope and landslides, due to geological and geomorphological conditions and to the significant and continuous human occupation over favorable areas is prone to the triggering of landslides. The samples were analyzed by thermogravimetry (TG), derivative thermogravimetry (DTG) and differential thermal analysis (DTA). This paper analyzes and characterizes the clay minerals and presence of water, gravitational mass movements’ sites and compares it with sites where gravitational mass movements do not occur. Indeed, this analysis also attempts to verify the presence of minerals.

Restricted access

Abstract  

This work proposes thermal characterization as analytical methodology for the identification and purity assay of warifteine, an alkaloid in Cissampelos sympodialis Eichl. Thermal and kinetic parameters were determined by means of TG and DSC photovisual studies. The TG results showed that the decomposition of warifteine in air and nitrogen atmospheres proceeds in three and four steps, respectively. The TG data allowed calculation of the kinetic parameters of warifteine. The activation energy values obtained by different methods displayed a good correlation. With the DSC photovisual system applied it is possible to detect the impurity level in warifteine after its purification.

Restricted access

Abstract  

The study of soils is very important in the geological and geological engineering researches. A study of ten samples of soils was carried out by thermal analysis, and X-Ray Fluorescence Spectrometry to understand soil evolution in Angra dos Reis region, Rio de Janeiro State, Brazil. The sample collection sites were chosen based on geological characteristics, the soil layer thickness, the soil composition pattern, and whether or not it was moved either by erosion or by gravitational shifts. Because of the humid tropical climatic condition, natural soils tend to show great thickness of weathered mantles with formation of saprolites and saprolite soils. Kaolinite is an important secondary mineral which can be formed from many different minerals, like k-mica and k-feldspar and can be weathered to gibbsite. The results from TG/DTG and DTA indicated which soils had more weathering, and the same results were obtained by XRF, when silica/aluminum ratios from samples are compared with thermal analysis results.

Restricted access

Abstract  

This paper reports an experimental study on the magnesium sulphate resistance of mortar specimens incorporating 0, 10 and 20% of metakaolin (MK). The evidence of the attack was evaluated through the content of calcium hydroxide (portlandite) and formation of magnesium hydroxide (brucite) by thermal analysis (thermogravimetric and derivative thermogravimetric analysis). The mechanical degradation of the mortar specimens was evaluated through splitting tensile tests after 200 days of exposition to the magnesium solution. The addition of metakaolin resulted in a reduction in the content of calcium hydroxide and in a smaller formation of brucite in comparison with reference mixture. A tensile strength loss of about 7% was observed for the metakaolin mortars submitted to the magnesium solution attack for 200 days.

Restricted access

Abstract  

Oxamniquine (OXA) is a schistosomicide agent that causes some adverse effects in central nervous system. Intending to improve OXA therapeutic properties, a polymeric prodrug was designed. Currently, there is an increasing interest of thermal analytical techniques in the pharmaceutical area, so differential thermal analysis (DTA) and thermogravimetry (TG) were carried out to evaluate the thermal behavior of OXA, polymethacrylic acid (PMA), [poly(methacrylic-co-oxamniquine methacrylate)acid] (PMOXA) and physical mixture (OXA+PMA). The thermoanalytical profile of the physical mixture showed characteristic events of the thermal decomposition of OXA and PMA. Distinctly, PMOXA DTA curve did not show an endothermic peak at 148.5C indicating that the drug was incorporated into the polymeric system. These results were corroborated by the IR spectroscopy and X-ray diffraction data.

Restricted access

Abstract  

Instrumental neutron activation analysis (INAA) with gamma-ray spectrometry was applied to determine As, Ca, Cd, Cl, Co, Cu, Cr, Fe, Hg, K, Mg, Mn, Mo, Na, Sb, Se and Zn in the Brazilian agroindustrial by-products. These materials are widely used in ruminant feeding. The results obtained were compared with requirement and maximum tolerable concentrations. The general conclusions from the data obtained were: (1) many by-products presented concentrations of some essential elements lower than the requirement concentrations, while in some concentrations of Cr, Fe, Mg and Se exceeded by a little the maximum tolerable concentrations, (2) the elements As, Cd, Hg and Sb, generally considered toxic, showed concentrations lower than maximum tolerable values.

Restricted access

Abstract  

A method for simultaneous determination of Cr, Fe, Co, Ni, Cu, Zn, As e Pb in liquid chemical waste using Energy Dispersive X-Ray Fluorescence (EDXRF) technique was evaluated. A small sample amount (200 μL) was dried on a 6.35 μm thickness Mylar film at 60 °C and the analyses were carried out using an EDXRF spectrometer operated with an X-ray Mo tube (Zr filter) at 30 kV/20 mA. The acquisition time was 300 s and the Ga element was utilized as internal standard at 25 mg/L for quantitative analysis. The method trueness was assessed by spiking and the detection limit for those elements ranged from 0.39 to 1.7 mg/L. This method is notable because it assists the choice of the more appropriated waste treatment procedure, in which inter elemental interference is a matter of importance. In addition, this inexpensive method allows a non-destructive determination of the elements from 19K to 92U simultaneously.

Restricted access

Abstract  

In the present work, the thermal decomposition of glimepiride (sulfonylurea hypoglycemic agent) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). Isothermal and non-isothermal methods were employed to determine kinetic data of decomposition process. The physical chemical properties and compatibilities of several commonly used pharmaceutical excipients (glycolate starch, microcrystalline cellulose, stearate, lactose and Plasdone) with glimepiride were evaluated using thermoanalytical methods. The 1:1 physical mixtures of these excipients with glimepiride showed physical interaction of the drug with Mg stearate, lactose and Plasdone. On the other hand, IR results did not evidence any chemical modifications. From isothermal experiments, activation energy (E a) can be obtained from slope of lnt vs. 1/T at a constant conversion level. The average value of this energy was 123 kJ mol–1. For non-isothermal method E a can be obtained from plot of logarithms of heating rates, as a function of inverse of temperature, resulting a value of 157 and 150 kJ mol–1, respectively, in air and N2 atmosphere, from the first stage of thermal decomposition.

Restricted access

Acetylsalicylic acid is the most widely used drug as antipyretic, analgesic, anti-inflammatory agent and for secondary prevention of thrombotic phenomena in the heart, brain and peripheral circulation. Drugs can modify the labeling of blood constituents with technetium-99m ( 99m Tc). This work has evaluated the effect of in vivo treatment with acetylsalicylic acid on the in vitro labeling of the blood constituents with 99m Tc. Wistar rats were treated with different doses (1.5, 3.0 and 6.0 mg/kg) of acetylsalicylic acid during 1 hour. At higher dose used (6.0 mg/kg) animals were treated during different period of time (0.25, 1.0 and 4.0 hours). Animals treated with physiologic saline solution were used as control. After the labeled process; plasma (P), blood cells (BC), insoluble (IF-P, IF-BC) and soluble (SF-P, SF-BC) fractions were separated. Afterwards, the percentage of radioactivity (%ATI) in each fraction was calculated. The treatment during 1 hour with acetylsalicylic acid at higher dose has significantly (p<0.05) modified the fixation of 99m Tc on blood cells. Considering the results, we suggest that acetylsalicylic acid used at therapeutic doses may interfere with the nuclear medicine procedures related to these blood constituents.

Restricted access

Abstract  

This study aimed to evaluate minor and trace elements in the water during different water purification steps of a deionized water production plant, located at CENA, by total-reflection X-ray fluorescence (TXRF) technique, using Ga as internal standard for elemental quantification. This approach was capable of determining Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Se, Br, Rb at concentrations higher than 40–100 μg L−1, and for K, Ca, Sc, Ti, V and Sr at concentrations higher than sub mg L−1 in the water samples. TXRF spectrometer encompasses an X-ray tube with a Mo target with a Zr filter. The elemental characteristic X-rays were recorded by a Si(Li) semiconductor detector and the X-ray spectra deconvoluted by AXIL software.

Restricted access