Search Results

You are looking at 1 - 10 of 32 items for

  • Author or Editor: J. L. Zhao x
  • All content x
Clear All Modify Search

The purpose of this study was to investigate the effects of endophytic fungi from tartary buckwheat on the host sprout growth and functional metabolite production. Without obvious changes in the appearance of the sprouts, the exogenous fungal mycelia elicitors notably stimulated the sprout growth and rutin accumulation, and the stimulation effect was mainly depended on the mycelia elicitor species along with its treatment dose. Three endophytic fungi Fat6 (Bionectria pityrodes), Fat9 (Fusarium oxysporum) and Fat15 (Alternaria sp.) were screened to be the most effective candidates for promoting F. tataricum sprout growth and rutin production. With application of polysaccharide (PS, 150 mg/l) of endophyte Fat6, PS (200 mg/l) of endophyte Fat9, and PS (150 mg/l) of endophyte Fat15, the rutin yield was effectively increased to 47.89 mg/(100 sprouts), 45.85 mg/(100 sprouts) and 46.83 mg/(100 sprouts), respectively. That was about 1.5- to 1.6-fold compared to the control culture of 29.37 mg/(100 sprouts). Furthermore, the present study revealed that the biosynthesis of the functional flavonoid resulted from the stimulation of the phenylpropanoid pathway by mycelia polysaccharide treatments. Application of specific fungal elicitors could be an efficient strategy for improving the nutritional and functional quality of tartary buckwheat sprouts.

Restricted access

Abstract  

The thermal behavior of rutin extracted from the buds of Sophora japonica L. by different methods and conditions have been investigated using TG and DTG. The results showed that every sample had different mass loss, curve shape, and peak location related to varied extraction technology. The TG-DTG characteristics of the rutin sample extracted by alkali-dissolution and acid-sedimentation with the solution adjusted to pH 9 and simply borax as stabilizer were highly similar to that of standard rutin, with the maximal purity determined by spectrophotometry. Therefore, the TG-DTG patterns could be served to characterize rutin extracted from the buds of Sophora japonica L.

Restricted access

Summary

A high-performance liquid chromatographic (HPLC) method has been developed for separation and quantitative analysis of flavonoid aglycones in Rhododendron anthropogonosides Maxim. Flavonoids in their bound forms were hydrolyzed with acid before HPLC analysis. Analytical samples were pretreated by solid-phase extraction on C18 reversed-phase cartridges. Optimum separation on a 4.6 mm × 250 mm i.d. C18 column was achieved by use of a 52:48 (v/v) mixture of methanol and an aqueous solution of 10 mm citric acid and 1 mm sodium dodecyl sulfate as mobile phase. The flow rate was 1.0 mL min–1 and the detection wavelength 360 nm. Five flavonoids, myricetin, quercetin, luteolin, kaempferol, and isorhamnetin, were separated with high resolution without use of gradient elution. The method was successfully used for efficient quality-control analysis by quantifying flavonoids in R. anthopogonosides. Repeatability tests showed that intra-day and inter-day RSD was <10%. LOD of the five flavonoids were <0.85 μg mL–1. Recovery ranged from 90.2 to 112.5%, with RSD <11.1%.

Restricted access

This study was to examine the effects of four fungal polysaccharides, namely exo-polysaccharide (EPS), water-extracted mycelia polysaccharide (WPS), sodium hydroxideextracted mycelia polysaccharide (SPS), and hydrochloric-extracted mycelia polysaccharide (APS) obtained from the endophytic fungus Bionectra pityrodes Fat6, on the sprout growth and flavonoids production of Fagopyrum tataricum. Without obvious changes in the appearance of the sprouts, the exogenous polysaccharide elicitors notably stimulated the sprout growth and functional metabolites accumulation, and the stimulation effect was mainly depended on the polysaccharide species along with its treatment dose. With application of 150 mg/l of EPS, 150 mg/l of WPS and 200 mg/l of SPS, the total rutin and quercetin yield of buckwheat sprouts was effectively increased to 49.18 mg/(100 sprouts), 50.54 mg/(100 sprouts), and 52.27 mg/(100 sprouts), respectively. That was about 1.57- to 1.66-fold in comparison with the control culture of 31.40 mg/(100 sprouts). Moreover, the present study revealed the accumulation of bioactive flavonoids resulted from the stimulation of the phenylpropanoid pathway by fungal polysaccharide treatments. It could be an efficient strategy for improving the nutritional and functional quality of tartary buckwheat sprouts applied with specific fungal elicitors.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: L. Yang, Li Sun, Fen Xu, J. Zhang, J. Zhao, Z. Zhao, C. Song, R. Wu, and Riko Ozao

Abstract  

The microcalorimetric method has been used to study the effects of cefpiramide and ceftizoxime sodium on the E. coli growth. The results revealed that these two cephalosporins may alter the metabolic way of the E. coli. Moreover, the lethal doses of cefpiramide and ceftizoxime sodium are 2.000 and 0.2000 μg mL−1, respectively. Combining with the relationships between growth rate constant (k), the maximum power output (P m), the time corresponding to the maximum power output (t m) and cephalosporins concentration (C), one can draw the conclusion that the ceftizoxime sodium has a stronger inhibition effects on the growth of E. coli than that of cefpiramide and they both have the possibility to induce the drug fever.

Restricted access

Abstract  

The effects of Amoxicillin Sodium and Cefuroxime Sodium on the growth of E. coli DH5α were investigated by microcalorimetry. The metabolic power-time curves of E. coli DH5α growth were determined by using a TAM air isothermal microcalorimeter at 37�C. By evaluation of the obtained parameters, such as growth rate constants (k), inhibitory ratio (I), the maximum heat power (P m) and the time of the maximum heat power (t m), one found that the inhibitory activity of Amoxicillin Sodium vs. E. coli DH5α is enhanced with the increasing of the Amoxicillin Sodium concentration, and the Cefuroxime Sodium has a stimulatory effect on the E. coli DH5α growth when the concentration is about 1 μg mL−1. The IC50 for the Amoxicillin Sodium and the Cefuroxime Sodium are 1.6 and 2.0 μg mL−1, respectively, it implicates that the E. coli DH5α is more sensitive to Amoxicillin Sodium than Cefuroxime Sodium.

Restricted access

Abstract  

A microcalorimetric technique based on the bacterial heat output was applied to evaluate the influence of antibiotics PIP (Piperacillin Sodium) and composite preparation of PIP and SBT (Sulbactam Sodium) on the growth of E. coli DH5α. The power–time curves of the growth metabolism of E. coli DH5α were studied using a TAM Air Isothermal Microcalorimeter at 37C. By analyzing the power–time curves, the parameters such as growth rate constants (k), inhibitory ratio (I), the maximum heat power (P m) and the time of the maximum heat power (t m) were obtained. The results show that different concentrations of antibiotics affect the growth metabolism of E. coli DH5α. The PIP in the concentration range of 0–0.05 g mL–1 has a stimulatory effect on the E. coli DH5α growth, while the PIP of higher concentrations (0.05 –0.25 g mL–1) can inhibit its growth. It seems that the composite preparation composed of PIP and SBT cannot improve the inhibitory effect on E. coli DH5α as compared with the PIP.

Restricted access
Cereal Research Communications
Authors: W. Xue, A. Gianinetti, Y. Jiang, Z. Zhan, L. Kuang, G. Zhao, J. Yan, and J. Cheng

The cereal endosperm provides nutrients for seedling growth. The effects of seed components in seedling establishments under salt stress are, however, not yet fully explored. In this study, 60 barley recombinant inbred lines derived from Lewis × Karl cross were grown in four different environments, and the seed contents of starch, total soluble protein, phytate, total phenolics, total flavonoids and total inorganic phosphorus were determined in the harvested grains. Seeds of each line from the four environments were also assayed for seedling growth under saline treatments from 0 to 400 mM NaCl. Root and shoot lengths after 7 days decreased with increasing salt concentration. Correlations between seed components and either root or shoot length were established across the four seed sources. ANOVA showed a significant environment/source effect for both seed components and seedling growth, although the latter was less affected by the seed-production environment. Modeling seedling length across multiple salinities for each seed source showed that the environment with the most saline-tolerant root-growth curve was that associated the highest seed phosphorus content. Correlations between seed components and seedling growth traits highlighted phytate and total inorganic phosphorus as key components for seedling growth under moderate salinities. Seed phytate contents benefited seedling growth, even at high salinities, suggesting an additional role for this seed component under stressful growth conditions, possibly linked to its potential function as an osmolyte source.

Restricted access

Starch is a product of photosynthetic activities in leaves. Wheat yields largely depend on photosynthetic carbon fixation and carbohydrate metabolism in flag leaves. The mapping of quantitative trait loci (QTLs) associated with flag leaf starch content (FLSC) in wheat (Triticum aestivum L.) was completed using unconditional and conditional QTL analyses. The FLSC of this population during the early grain-filling stage was measured at six stages in six environments. Combining unconditional and conditional QTL mapping methods, eight unconditional QTLs and nine conditional QTLs were detected, with five QTLs identified as unconditional and conditional QTLs. Four unconditional QTLs (i.e. qFLS-1B, qFLS-1D-1, qFLS-4A, and qFLS-7D-1) and one conditional QTL (i.e. qFLS-3A-1) were identified in two of six environments. Two QTLs (qFLS-1D-2 and qFLS-7D-1), which significantly affected the FLSC, were identified using the unconditional QTL mapping method, while three QTLs (i.e. qFLS-1A, qFLS-3A-1, and qFLS-7D-1) were detected using the conditional QTL mapping method. Our findings provide new insights into the genetic mechanism and regulatory network underlying the diurnal FLSC in wheat.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: L. Zhou, S. Wen, J. Zhao, B. Yu, B. Han, and Ch. Yang

Abstract  

The -ray spectra of188Re decay have been studied by using two Ge/Li/ spectrometers and a three parameters /E-E-T/ List coincidence system. The energies and relative intensities of 52 -rays and cascade relations of 14 -rays are determined. Ten new -rays: 155 /633–478/, 984, 1096, 1463, 1332, 1530, 1574, 1810, 1867, and 1937 keV have been identified. The 155 /633–478/ transition is confirmed and its relative intensity is estimated by means of coincidence experiment. 24 levels of188Re are assigned. Among those, 6 levels are first put into the decay scheme of188Re. In addition to 1443 keV and 1937 keV levels, 1685, 1729 and 1965 keV levels are also observed in the decay of188Ir and other reaction studies. The 1948 level is recently suggested in the190Os/p, t/188Os reaction. The 486 keV and 811 keV -transitions are also put into the level scheme of188Re. The decay branching ratio is deduced.

Restricted access