Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: J. Sarzyński x
- Refine by Access: All Content x
Complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 4-chloro-2-methoxybenzoic acid anion
Physico-chemical properties
Abstract
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2 nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)24H2O, 3.96–4.75 μB for Co(C8H6ClO3)25H2O, 2.32–3.02 μB for Ni(C8H6ClO3)25H2O and 1.77–1.94 μB for Cu(C8H6ClO3)24H2O.
Abstract
Four new complexes of 2,3,4-trimethoxybenzoic acid anion with manganese(II), cobalt(II), nickel(II) and copper(II) cations were synthesized, analysed and characterized by standard chemical and physical methods. 2,3,4-Trimethoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) are polycrystalline compounds with colours typical for M(II) ions. The carboxylate group in the anhydrous complexes of Mn(II), Co(II) and Ni(II) is monodentate and in that of Cu(II) monohydrate is bidentate bridging one. The anhydrous complexes of Mn(II), Co(II) and Ni(II) heated in air to 1273 K are stable up to 505–517 K. Next in the range of 505–1205 K they decompose to the following oxides: Mn3O4, CoO, NiO. The complex of Cu(II) is stable up to 390 K, and next in the range of 390–443 K it loses one molecule of water. The final product of its decomposition is CuO. The solubility in water at 293 K is of the order of 10–3 mol dm–3 for the Mn(II) complex and 10–4 mol dm–3 for Co(II), Ni(II) and Cu(II) complexes. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in 2,3,4-trimethoxybenzoates experimentally determined in the range of 77–300 K change from 5.64–6.57 μB (for Mn2+), 4.73–5.17 μB (for Co2+), 3.26–3.35 μB (for Ni2+) and 0.27–1.42 μB (for Cu2+). 2,3,4-Trimethoxybenzoates of Mn(II), Co(II) and Ni(II) follow the Curie–Weiss law, whereas that of Cu(II) forms a dimer.
Abstract
4-Chloro-2-methoxybenzoates of light lanthanides(III) were obtained as mono-, di-or trihydrates with metal to ligand ratio of 1:3 and general formula Ln(C8H6ClO3)3·nH2O, where n=1 for Ln=Ce, Pr, n=2 for Ln=Nd, Sm, Eu, Gd and n=3 for Ln=La. The complexes were characterized by elemental analysis, IR spectra, thermogravimetric studies, X-ray diffraction and magnetic measurements. The carboxylate group appears to be a symmetrical bidentate, chelating ligand. All complexes seem polycrystalline compounds. Their thermal stabilities were determined in air. When heated they dehydrate to form anhydrous salts which next are decomposed to the oxides of the respective metals. The solubilities of light lanthanide(III) 4-chloro-2-methoxybenzoates in water at 293 K are of the order of 10−5 mol dm−3. The magnetic moments were determined over the range of 77–300 K. They obey the Curie-Weiss law. The values of μeff calculated for all compounds are close to those obtained for Ln3+ by Hund and Van Vleck. The results indicate that there is no influence of the ligand field of 4f electrons on lanthanide ions and the metal ligand bonding is mainly electrostatic in nature.
4-Chloro-2-methoxybenzoates of heavy lanthanides(III) and yttrium(III)
Thermal, spectral and magnetic behaviour
Abstract
4-Chloro-2-methoxybenzoates of heavy lanthanides(III) and yttrium(III) were obtained as mono-, di-, tri-or tetrahydrates with metal to ligand ratio of 1:3 and general formula Ln(C8H6ClO3)3·nH2O, where n=1 for Ln=Er, n=2 for Ln=Tb, Dy, Tm, Y, n=3 for Ln=Ho and n=4 for Yb and Lu. The complexes were characterized by elemental analysis, FTIR spectra, TG, DTA and DSC curves, X-ray diffraction and magnetic measurements. The carboxylate group appears to be a symmetrical bidentate chelating ligand. All complexes are polycrystalline compounds. The values of enthalpy, ΔH, of the dehydration process for analysed complexes were also determined. The solubilities of heavy lanthanide(III) 4-chloro-2-methoxybenzoates in water at 293 K are of the order of 10−4 mol dm−3. The magnetic moments were determined over the range of 76–303 K. The results indicate that there is no influence of the ligand field of 4f electrons on lanthanide ions and the metal ligand bonding is mainly electrostatic in nature.
Abstract
Physico-chemical properties of 4-chloro-2-nitrobenzoates of Co(II), Ni(II), and Cu(II) were studied. The complexes were obtained as mono- and trihydrates with a metal ion to ligand ratio of 1:2. All analysed 4-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II), and blue for Cu(II) complexes. Their thermal decomposition was studied only in the range of 293–523 K, because it was found that on heating in air above 523 K 4-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10–4–10–2 mol dm–3. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 4-chloro-2-nitrobenzoates experimentally determined at 76–303 K change from 3.89 to 4.82 μB for Co(II) complex, from 2.25 to 2.98 μB for Ni(II) 4-chloro-2-nitrobenzoate, and from 0.27 to 1.44 μB for Cu(II) complex. 4-chloro-2-nitrobenzoates of Co(II), and Ni(II) follow the Curie–Weiss law. Complex of Cu(II) forms dimer.