Search Results

You are looking at 1 - 10 of 29 items for

  • Author or Editor: J. Shi x
Clear All Modify Search

Abstract  

Electrospray ionization mass spectrometry (ESI-MS) was used for the study of cyclization of organic chelating compounds (chelators). Four chelating compounds were studed: Symmetrical ethylenediaminediacetic acid (s-EDDA), Unsymmetrical ethylenediaminediacetic acid (u-EDDA), N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA), and N-(2-hydroxyethyl)iminodiacetic acid (HEIDA). The chelators were cyclized with treatments of acids and heating. The open and cyclized form of the chelators were semi-quantified by both positive and negative ion modes ESI-MS. The kinetics of chelator cyclization was studied as a function of reaction temperature and the pH of the matrix. The cyclization of s-EDDA was found to be a pseudo-first order reaction in s-EDDA and overall second order. The cyclizations of HEIDA and HEDTA are reversible reactions. Higher temperature and lower pH favors cyclization.

Restricted access

Summary

A high-performance liquid chromatographic (HPLC) technique coupled with photodiode array (PDA) detection has been proposed for simultaneous determination of five flavonoids, i.e. quercetin 3-O-β-d-glucopyranoside, quercetin 4′-methoxy-3-O-β-d-galactopyranoside, kaempferol 3-O-β-l-rhamnopyranoside, asebotin, and kaempferol 7-methxoy-3-O-α-l-rhamnopyranoside in extract of the whole plant of Saussurea mongolica Franch. The optimum conditions for separation were achieved on a 4.6 × 250 mm i.d., 5-μm particle, C18 column with acetonitrile and 1% acetic acid (20:80, v/v) as the mobile phase at a flow rate of 1.0 mL min−1. For all the analytes, a good linear regression relationship (r of >0.999) was obtained between peak area and concentration over a relatively wide range. The method was validated for repeatability, precision, stability, and accuracy. Seven different extraction procedures were investigated for preparation of the sample solution. The validated method was successfully applied to simultaneous analysis of these flavonoids in S. mongolica and was found to be simple and efficient.

Restricted access
Authors: C. Tian, Z. Shi, H. Zhang, J. Xu, J. Shi and H. Guo

Abstract  

The thermal degradation of cotton cellulose treated with chemical mixtures containing P and N was studied by thermal analysis, infrared spectroscopy, Char yield and limiting-oxygen-index (LOI). Our experiments demonstrated the following facts. The temperatures and activation energies of pyrolysis were lower for cotton cellulose treated with flame retardants than those for untreated samples and the values of Char yield and LOI were greater for treated cotton than those for untreated one.

Restricted access

Developmental genetics of phenylalanine content in indica-japonica hybrid rice ( Oryza sativa L.) have been studied through 7 indica rice crossed with 5 japonica rice by using the developmental genetic models and corresponding statistical approaches for quantitative traits of triploid seeds in cereal crops. The unconditional genetic model was used to analyze the cumulative genetic effects (from flowering to a specific time) along the developmental stages, and the conditional genetic model was used to analyze the genetic effects in one specially developmental stage from one filling time to another time ( t -1→ t ). Results showed that phenylalanine content of indica-japonica hybrid rice was simultaneously controlled by the triploid endosperm effects, cytoplasm effects, diploid maternal effects and their genotype × environment interaction effects. Endosperm dominance effect, maternal additive effect and cytoplasmic effect were more important at the initial stage of rice development than endosperm additive effect and maternal dominance effect. With regard to the components of heritability, maternal and cytoplasm general heritability and their interaction heritability were higher for phenylalanine content at all 5 developmental stages. Respectively, it occupied 68.3, 92.4, 100.0, 100.0 and 78.9% among all the component of heritability. It was suggested that improving the phenylalanine content of indica-japonica hybrid rice would be more efficient when selection was based on maternal plants at early generations in rice breeding program.

Restricted access
Authors: M. Ji, J. Liu, S. Gao, R. Hu and Q. Shi

Abstract  

The thermal decomposition behaviour of the complexes of rare earth metals with histidine: RE(His)(NO3)3 H2O (RE=La—Nd, Sm—Lu and Y; His=histidine) was investigated by means of TG-DTG techniques. The results indicated that the thermal decomposition processes of the complexes can be divided into three steps. The first step is the loss of crystal water molecules or part of the histidine molecules from the complexes. The second step is the formation of alkaline salts or mixtures of nitrates with alkaline salts after the histidine has been completely lost from the complexes. The third step is the formation of oxides or mixtures of oxides with alkaline salts. The results relating to the three steps indicate that the stabilities of the complexes increase from La to Lu.

Restricted access
Authors: X. Cao, X. Yang, J. Shi, Y. Liu and C. Wang

Abstract  

The effect of glucose (0–15 mass%) on the kinetics of bovine serum albumin (BSA) denatured aggregation at high concentration in aqueous solution has been studied by differential scanning calorimetry. The observed denatured aggregation process was irreversible and could be characterized by a denaturation temperature (T m), apparent activation energy (E a), the approximate order of reaction, and pre-exponential factor (A). As the glucose concentration increased from 0 to 15 mass%, T m increased, E a also increased from 514.59409±6.61489 to 548.48611±7.81302 kJ mol−1, and A/s−1 increased from 1.24239E79 to 5.59975E83. The stabilization increased with an increasing concentration of glucose, which was attributed to its ability to alter protein denatured aggregation kinetics. The kinetic analysis was carried out using a composite procedure involving the iso-conversional method and the master plots method. The iso-conversional method indicated that denatured aggregation of BSA in the presence and absence of glucose should conform to single reaction model. The master plots method suggested that the simple order reaction model best describe the process. This study shows the combination of iso-conversional method and the master plots method can be used to quantitatively model the denatured aggregation mechanism of the BSA in the presence and absence of glucose.

Restricted access

Summary

A reversed-phase high-performance liquid chromatographic method was developed for the first time to simultaneously determine salicin and eight flavonoids in leaves of Salix matsudana, that is salicin, luteolin-7-O-glucoside, myricetin, apigenin-3′-oxyethyl-7-O-glucoside, rutin, quercetin, luteolin, kaempferol and apigenin. The separation of these compounds was achieved on a reversed phase C18 column (250 × 4.6 mm, 5 μm), with linear gradient of methanol in 0.2% phosphoric acid solution with a flow rate of 1.0 mL/min with UV detection at 246 nm. The calibration curves for the determination of all analytes showed good linearity over the investigated ranges (r > 0.999). The % relative standard deviation (% RSD) values were less than 0.34%, and the recoveries were between 95.79% and 99.94%. The values of luteolin-7-O-glucoside, salicin, myricetin, apigenin-3′-oxyethyl-7-O-glucoside, rutin, quercetin, luteolin, kaempferol, and apigenin were 1.0 μg g−1, 20.0 μg g−1, 32.9 μg g−1, 2.0 μg g−1, 29.5 μg g−1, 6.0 μg g−1, 1.0 μg g−1, 3.5 μg g−1, and apigenin was not found in the sample. This developed method can be used for evaluating the quality of different plant materials.

Restricted access

Summary

A high-performance liquid chromatographic (HPLC) method coupled with photodiode array (PDA) detection has been developed and validated for simultaneous analysis of six active components (syringin, hyperoside, baicalin, quercetin, baicalein, and farrerol) of the Chinese medicinal preparation Qin-Bao-Hong antitussive tablet. The optimum conditions for separation were achieved on a 3.9 mm × 150 mm i.d., 5-μm particle, C18 column with a linear mobile phase gradient prepared from acetonitrile and 1% acetic acid at a flow rate of 1.0 mL min−1. Because of the different UV characteristics of these compounds, four detection wavelengths were used for the quantitative analysis (265 nm for syringin, 256 nm for hyperoside and quercetin, 277 nm for baicalin and baicalein, and 296 nm for farrerol). For all the analytes a good linear regression relationship (r > 0.999) was obtained between peak area and concentration over a relatively wide range. The method was validated for repeatability, precision, stability, accuracy, selectivity, and robustness. The validated method was successfully applied to simultaneous analysis of these active components in Qin-Bao-Hong antitussive tablet from different production batches.

Restricted access

Summary

A novel liquid-phase microextraction (LPME) technique, based on a hollow fiber (HF), in conjunction with high-performance liquid chromatography, has been developed for analysis of melamine in milk products. Melamine was extracted directly from milk products by use of a hollow-fiber membrane filled with organic solvent. HFLPME conditions, for example pH, extraction solvent, temperature, stirring rate, and extraction time were optimized. The best extraction efficiency of melamine was achieved under the conditions: pH 9.5, 35 μL n-octanol as extraction solvent, temperature 55°C, stirring rate 300 rpm, and extraction time 30 min. The HF-LPME technique resulted in a preconcentration ratio of 29-fold. Baseline chromatographic separation of melamine was achieved on a C18 column with 96:4 (v/v) 0.02 mol L−1 ammonium sulfate-methanol as isocratic mobile phase. The linearity of the method ranged from 1.0 to 100.0 μg mL−1, correlation coefficient 0.9994. The limit of detection by use of HF-LPME was 0.021 μg mL−1 at a signal-to-noise ratio of 3. The optimized HF-LPME technique was successfully applied to the analysis of melamine in milk products collected from different commodity manufacturing units.

Restricted access

Fluid radiation effects in the transient hot-wire technique

Measurement of thermal conductivity of propane

Authors: Y. Shi, L. Sun, F. Tian, J. Venart and R. Prasad

Abstract  

The transient hot-wire technique is widely used for absolute measurements of the thermal conductivity of fluids. Refinement of this method has resulted in a capability for accurate and simultaneous measurement of both thermal conductivity and thermal diffusivity together with a determination of the specific heat. However, these measurements, especially those for the thermal diffusivity, may be significantly influenced by fluid radiation. The present work investigates the effect of fluid radiation on the measurements of the thermal conductivity of propane. Recently developed corrections have been used to examine this assumption and rectify the influence of even weak fluid radiation. Measurements at 372 K with a hot-wire instrument demonstrate the presence of radiation effects in both the liquid and vapor phase. The influence is much more pronounced in liquid propane at 15.5 MPa than in the vapor phase at 881.5 kPa. The technique employed to obtain radiation-free thermal conductivity measurements is described.

Restricted access