Search Results

You are looking at 1 - 10 of 32 items for

  • Author or Editor: J. Zhu x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

A novel method that spent nuclear fuel is converted into nitrates with N2O4, and then nitrates are extracted with TBP in supercritical CO2 (SC-CO2), has been developed for reprocessing of spent nuclear fuel, which has a potential prospect because of its potential to decrease generation of the secondary liquid waste. In this paper, conversion of Nd2O3 with N2O4 into its nitrate under various conditions and extraction of the conversion product with TBP in SC-CO2 were investigated. When temperature was 60–120 °C, the molar ratio of H2O to Nd2O3 was from 1 to 6, and molar ratio of N2O4 to Nd2O3 was above 8, complete conversion of Nd2O3 into its nitrate was achieved. The conversion product was characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and Raman spectroscopy. Quantitative extraction of the conversion product with TBP in supercritical CO2 was also achieved under experimental conditions.

Restricted access

Abstract  

Polyacrylamide (PAM), poly(N,N-dimethylacrylamide) (PDMA) and poly(N,N-diethylacryl-amide) (PDEA) were synthesized by plasma-initiated polymerization. Both wet and dry polymers were prepared. The states of the water absorbed in the wet and dry samples were studied directly by means of TG, and the stabilities of the dry polymers in the process of thermal treatment were investigated by FT-IR. The activation energy of release of the bonded water was calculated by the Kissinger method. The water absorbed in the polymers was found to be in two states, i.e. weakly-bonded water and bonded water, and the absorbed water content varied with the monomer concentration, the plasma duration time and the type of polymer.

Restricted access

Abstract  

To develop potential new Tc radiopharmaceuticals, a novel compound [99mTc(CO)2(NO)(EHIDA)]0 (EHIDA: 2,6-diethylphenylcarbamoylmethyliminodiacetic acid) has been prepared by reacting [99mTc(CO)3)(EHIDA)] with NOBF4 both in water and acetonitrile. The conversion of [99mTc(CO)3)(EHIDA)] to [99mTc(CO)2(NO)(EHIDA)]0 was supported by TLC, HPLC and eletrophoresis. The radiochemical purity (more than 99%) was proved by TLC and HPLC. The biodistribution in mice demonstrated that [Tc(CO)2(NO)(EHIDA)]0 showed higher uptake in blood, kidney and lung (15 min, blood: 19.24±2.95; kidney: 13.61±3.49; lung: 10.81±1.09.) but a lower uptake in liver (15 min, 5.73±0.74). The slower clearances (120 min, blood: 12.75±1.34; kidney: 13.61±3.49) from blood and kidney were also found. This research describes two methods for the conversion of [99mTc(CO)3]+ into [99mTc(CO)2)(NO)]2+ by using NOBF4 as the source of NO+ both in organic solvent and water. The latter method offers the possibility to introduce the NO-group in high yield in water.

Restricted access

Abstract  

In this paper the dependence of build-up233U,232U,233Pa and fission products from ThO2 irradiated in HFETR on integral thermal neutron fluxes and neutron spectra have been investigated. The yields of all above nuclides in ThO2 increase with the increase of integral thermal neutron fluxes at different neutron spectra. The values of233U/232Th increase with the increases of th and decreases with the increase of fast/thermal neutron ratios ( f/ th). The values of232U/233U increase with the increase of both th and f/ th ratio. The amount of fission products relative to original irradiated thorium decreases with the increase of f/ th ratios. These results could be used to evaluate the behaviour of thorium-based nuclear fuel in reactor.

Restricted access

Abstract  

In order to identify the kinetic process of self-heating in DSC experiment for Ti+3Al→TiAl3 reaction, two approaches, linear-fitting approach developed from Semenov"s theory of spontaneous ignition and variation of Friedman method, were carried out with cylindrical Ti-75 at% Al samples. Following these approaches, two identical activation energies are obtained as 16915 kJ mol-1 and 1705 kJ mol-1, respectively. Compared with the activation energies of reactions and interdiffusions between Ti and Al, the possible rate-controlling process of self-heating in DSC experiment for Ti+3Al→TiAl3 reaction is the interdiffusion between Ti and Al through TiAl3-layer.

Restricted access

Abstract  

The glass formation and devitrification of GaF3-based glasses were studied by differential scanning calorimetry. A comparison of various simple quantitative methods to assess the level of stability of multicomponent fluoride glass systems is presented. Most of these methods are based on critical temperatures. In this paper a new parameter k b(T) is added to the stability criteria. The stability of several GaF3-based glasses were experimentally evaluated and correlated with the activation energies of crystallization via this new kinetic criterion and compared with those evaluated by other criteria.

Restricted access

Abstract  

The microcalorimetric method and DNA site-directed mutagenesis technique were used together to study the effect of transcription start site mutagenesis on RM07 promoter activity and gene transcription efficiency in Escherichia coli. The results revealed that once the putative transcription start site G was mutated to T, the promoter activity of RM07 promoter fragment was decreased and the transcription strength of cat reporter gene was weakened. Our work suggests that the nucleotide component of transcription start site is very critical for the promoter strength and the gene transcription efficiency. Our research also provides a new and useful technique for determining the transcription start site using both chemical and biological method.

Restricted access

Abstract  

Two series of antibacterial compounds were synthesized using montmorillonite and chlorhexidine acetate (CA) by ion-exchange reaction. The resulting samples were characterized by high-resolution thermogravimetric analysis (HRTG), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and their antibacterial activity was assayed by halo method. In this study, the loaded amounts of CA in the resultant compounds were evaluated by the HRTG curves. CA adopts a lateral monolayer arrangement in the resulting samples with low CA loading, while a special state with partial overlapping of organic molecules is supposed for the resulting samples prepared at 1.0–4.0 CEC. After the intercalation with CA, the hydrophilic surfaces of montmorillonite are changed to hydrophobic ones, reflected by the frequency shift of the symmetric ν1(O-H) stretching vibration from low to high. This study shows that the interlayer cations in raw montmorillonite have little influence on the structure of the resulting samples. Antibacterial activity test against E. coli demonstrates that the antibacterial activity of the resulting samples strongly depends on the content of the loaded CA and these resulting materials show a long-term antibacterial activity that can last for at least one year.

Restricted access

Abstract  

The critical furnace chamber temperature (Tign) of the thermal explosion synthesis reaction Ti+3Al→TiAl3 is studied by isothermal and non-isothermal DSC. The reaction product is characterized by using the X-ray powder diffraction. The value of Tign is between 740 and 745C obtained from the isothermal DSC observations, and 729C obtained from non-isothermal DSC curves. It shows that these two values have a good consistency. With the help of the apparent activation energy of the reaction obtained by Friedman method and the value of Tign0 by the multiple linear regression of the Tigns at different heating rates (β), the critical temperature (T b) of thermal explosion for Ti–75at%Al mixture is estimated to be 785C.

Restricted access