Search Results
You are looking at 1 - 10 of 14 items for
- Author or Editor: J.-P. Guerbois x
- Refine by Access: All Content x
Abstract
The reactivity of MgO obtained from calcination of magnesium carbonate at different temperatures has been investigated by means of hydration in a constant relative humidity environment at 40°C for periods up to 24 days. Natural magnesite and AR grade basic MgCO3 calcined in the range of 500–1000°C was characterised in terms of surface area, crystallite size, morphology, and hydration rate. It was found that the hydration rate is dependent on the surface area and crystallite size where temperature was the main variable affecting them. The most reactive MgO was produced at the lowest calcination temperature with the highest surface area and the smallest crystallite size. The basic MgO specimens showed higher degree of hydration compared to the natural MgO specimens due to the smaller surface area and larger crystallite size. The low MgO content of the starting natural magnesite is also attributable to the lower reactivity. This preliminary study serves as a mean to investigate potential utilisation of reactive MgO as a supplementary cementitious material in eco-friendly cements.
Abstract
Naturally occurring opals from three different regions in Australia were studied for their thermal characteristics. All the opals showed initial expansion followed by contraction in thermomechanical analysis (TMA) although the temperature at which the change from expansion to contraction occurred depended on their provenance. Thermogravimetric analysis (TG) revealed different rates and temperatures of dehydration for these opals. A general correlation between the temperature at which there was a zero thermal expansion and that of the maximum rate of dehydration was observed. A dehydration–sintering mechanism is proposed with the effect of sintering being more pronounced following total dehydration.
Abstract
The utilisation of fired clay-brick waste is of interest in the manufacture of building products due to both socio-economic and technological reasons. Autoclaving is an established process for manufacturing calcium silicate-based building products that affords rapid strength development. Clay-brick waste represents a source of alternative silica, which is more reactive than conventionally used silica and also contains alumina. This paper presents data on the effect of lowering the autoclaving temperature from commonly practised 180 to 170°C on OPC-quartz blends containing clay-brick fines as direct replacement of quartz at 4.3, 8.6 and 12.9 mass percentages. The hydration products of autoclaved OPC-quartz blends with clay-brick fines were characterised using simultaneous DTA-TG in combination with other methods.
Abstract
The degradation of poly(vinyl alcohol) was investigated using TG analysis and Fourier transform infrared spectroscopy to determine the effect of atmosphere on the process of degradation. In the spectra, four vibrational modes were identified that characterised the major steps of the degradation process. These were the O-H, C-H, C=O and C=C stretching modes. The mechanism observed for degradation in an inert atmosphere was in accordance with the accepted mechanism of elimination followed by pyrolisation. Evidence of conjugated polyenes, however, was not observed. For the air atmosphere, oxidation in both steps of the degradation process was observed.
Summary Due to growing environmental concerns and the need to use less energy-intensive building products, alternatives and improvements to Portland cement (PC) are being actively researched worldwide. Use of supplementary materials is now a common practice where PC is the predominant component of inorganic building products. This study aims to investigate the potential of magnesia (MgO), derived from a naturally occurring raw material magnesite, as a supplementary material. Results from mortar samples prepared with 10 and 20% replacements of ordinary Portland cement (OPC) by MgO are presented. DTA-TG was used to study and characterise the hydration behaviour of MgO in OPC environment after 3, 7, 14, 28, 56 and 90 days of moist curing. Microstructural and compressive strength determinations providing additional information on the influence of hydrated phases are also reported.
Abstract
The deleterious interaction of some traditional sulphide artists pigments and copper ions results in the formation of black copper sulphides, in particular, covellite (CuS), and, hence, the discolouration of valuable artworks. In this paper the interaction of malachite, a source of copper(II) ions, with the pigment cadmium yellow, a sulphide pigment comprising of a solid solution of cadmium and zinc sulphides, is investigated by XRD and TG-MS. XRD showed the presence of the copper sulphide and cadmium carbonate phases, produced by a simple ion exchange mechanism. TG-MS showed the complexity of the range of metastable phases produced. The identification of these phases, however, requires further work.
Abstract
An accurate means of determining bone age is a goal for forensic scientists. In this study, thermogravimetric analysis (TGA) has been used to examine pig bone specimens of different post-mortem age. Analysis of bone in both air and nitrogen atmospheres reveals a decrease in total mass loss as the bones age. Two mass loss steps due to the decomposition of the organic bone components were observed and show decreasing trends with age for decomposition in an air atmosphere. In a nitrogen atmosphere the decomposition was observed to be more complex and age dependence of the mass loss for each step was not identified. The TGA data, however, demonstrates the potential of the technique as a means of estimating post-mortem age of forensic bone specimens.
Abstract
In order to investigate the potential of thermal analysis for the determination of post-mortem age, rib bone specimens were collected from the remains of a number of slaughtered pigs that were allowed to decompose in the Australian bush in a controlled site under a range of conditions for time periods ranging from 1 to 5 years. The bone specimens were cut in cross-section with the compact bone collected for analysis. TG-MS curves were collected by heating bone samples to 1100°C in an argon atmosphere. The TG-MS data showed significant differences for the pig bone specimens derived from the different environments and showed trends in peak size correlating with age. The reported data suggest that TG-MS has significant potential for the identification of origin as well as the ageing of skeletal remains in a forensic context.
Abstract
A challenge for forensic examiners is the ageing and characterisation of bone fragments or decomposed skeletal remains. Due to the sensitivity of thermal methods to morphological states, thermal analysis has been selected as a technique which could overcome the difficulties. In this preliminary study, TG-MS was applied to the characterisation of bone fragments derived from the compact bone of pig rib specimens. TG-MS curves were collected by heating bone samples to 1000C in an argon atmosphere. Under these conditions, both the organic and inorganic phases decomposed, producing a variety of organic fragments and carbon dioxide. Pyrolysis of the organic phase, which is composed predominantly of collagen, occurred resulting in the observation of ion fragments up to 110 amu. Selected fragments were monitored and their observation is discussed in terms of the decomposition of both the collagen phase and the inorganic carbonated hydroxyapatite phase.