Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: J.P. Loenneke x
Clear All Modify Search

To investigate the relationships between site-specific muscle loss in the thigh, muscle quality and zigzag walking performance, 40 men and 41 women aged 65–79 years had muscle thickness (MTH) measured by ultrasound at nine sites on the anterior and posterior aspects of the body. Skeletal muscle mass (SM) was estimated from an ultrasoundderived prediction equation. Site-specific thigh sarcopenia was calculated using ultrasound-measured MTH at the anterior/posterior aspects of the thigh (AP-MTH ratio). Zigzag walking time (ZWT) and maximum isometric knee extension (KE) and flexion (KF) torques were measured. Muscle quality (torque/thigh SM) and knee joint strength index (torque/body mass) were calculated. There were no significant correlations between SM index and ZWT. However, AP-MTH ratio was inversely correlated (P < 0.05) to ZWT in men (r = −0.335) and women (r = −0.309). ZWT was also inversely correlated (P < 0.05) to KE-strength index in both sexes (men, r = −0.328; women, r = −0.372). Similarly, ZWT was correlated to KF-strength index (r = −0.497) and muscle quality (r = −0.322) in women, but not in men. After adjusting for age, height and body mass, AP-MTH ratio was inversely correlated to ZWT in men (r = −0.325) and tended to be correlated to ZWT in women (r = −0.263). Zigzag walking performance may be associated with site-specific thigh sarcopenia in older men and women.

Restricted access
Authors: Robert Thiebaud, J.P. Loenneke, C.A. Fahs, D. Kim, X. Ye, T. Abe, K. Nosaka and M.G. Bemben

Discrepancies exist whether blood flow restriction (BFR) exacerbates exercise-induced muscle damage (EIMD). This study compared low-intensity eccentric contractions of the elbow flexors with and without BFR for changes in indirect markers of muscle damage. Nine untrained young men (18–26 y) performed low-intensity (30% 1RM) eccentric contractions (2-s) of the elbow flexors with one arm assigned to BFR and the other arm without BFR. EIMD markers of maximum voluntary isometric contraction (MVC) torque, range of motion (ROM), upper arm circumference, muscle thickness and muscle soreness were measured before, immediately after, 1, 2, 3, and 4 days after exercise. Electromyography (EMG) amplitude of the biceps brachii and brachioradialis were recorded during exercise. EMG amplitude was not significantly different between arms and did not significantly change from set 1 to set 4 for the biceps brachii but increased for the brachioradialis (p ≤ 0.05, 12.0% to 14.5%) when the conditions were combined. No significant differences in the changes in any variables were found between arms. MVC torque decreased 7% immediately post-exercise (p ≤ 0.05), but no significant changes in ROM, circumference, muscle thickness and muscle soreness were found. These results show that BFR does not affect EIMD by low-intensity eccentric contractions.

Restricted access
Authors: Juan Martín-Hernández, P. Marín, H. Menéndez, J. Loenneke, M. Coelho-e-Silva, D. García-López and A. Herrero

In order to ascertain whether differing structural mechanisms could underlie blood flow restricted training (BFRT) and high intensity training (HIT), this study had two aims: (i) to gain an insight into the acute variations of muscle architecture following a single bout of two different volumes of BFRT, and (ii) to compare these variations with those observed after HIT. Thirty-five young men volunteered for the study and were randomly divided into three groups: BFRT low volume (BFRT LV), BFRT high volume (BFRT HV) and traditional high intensity resistance training (HIT). All subjects performed a bilateral leg extension exercise session with a load of 20% of one repetition maximum (1RM) in the BFRT groups, whereas the load of the HIT group was equivalent to an 85% of their 1RM. Before and immediately after the exercise bout, ultrasound images were taken from the rectus femoris (RF) and the vastus lateralis (VL). All groups increased their RF (p < 0.001) and VL (p < 0.001) muscle thickness, while the increases in pennation angle were larger in HIT as compared to BFRT LV (p = 0.013) and BFRT HV (p = 0.037). These results support the hypothesis that acute muscle cell swelling may be involved in the processes underlying BFRT induced muscle hypertrophy. Furthermore, our data indicate differing structural responses to exercise between BFRT and HIT.

Restricted access