Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: JA Loeppky x
Clear All Modify Search


The reported magnitude of plasma volume increase (Δ%PV) following heat acclimation (HA) varies widely. Variations may result from differences in measurement techniques, season and subjects’ fitness. This report compares direct and indirect measurements of Δ%PV after 10 days of HA from studies in winter (WIN, n = 8) and summer (SUM, n = 10) in men, age 21–43 yr, at two fitness levels (VO2max: 35 and 51 ml/min/kg). Direct measurements were made before and after HA (cycling at 30% of VO2max at 50 °C, for 100 min/day) by carbon monoxide (CO) rebreathing and compared with indirect estimates from changes in hematocrit, hemoglobin and plasma protein concentration.


Overall, Δ%PV by CO was small (2.9%) and greater in SUM than WIN (5.0 vs. 0.3%). Red cell, blood and plasma volumes/kg lean body mass increased in SUM and decreased in WIN, the difference being significant, and Δ%PV by CO was similar for high and low VO2max.


Overall, indirect estimates of Δ%PV by hemoglobin and hematocrit were similar to CO, but tended to differentiate by fitness and not season. The difference in THb increase in SUM and decrease in WIN was significant. This probably accounts for the differences from the seasonal and fitness results by the direct CO method.

Restricted access
Restricted access

This study compared the ventilation response to an incremental ergometer exercise at two altitudes: 633 mmHg (resident altitude = 1,600 m) and following acute decompression to 455 mmHg (≈4,350 m altitude) in eight male cyclists and runners. At 455 mmHg, the VESTPD at RER <1.0 was significantly lower and the VEBTPS was higher because of higher breathing frequency; at VO2max, both VESTPD and VEBTPS were not significantly different. As percent of VO2max, the VEBTPS was nearly identical and VESTPD was 30% lower throughout the exercise at 455 mmHg. The lower VESTPD at lower pressure differs from two classical studies of acclimatized subjects (Silver Hut and OEII), where VESTPD at submaximal workloads was maintained or increased above that at sea level. The lower VESTPD at 455 mmHg in unacclimatized subjects at submaximal workloads results from acute respiratory alkalosis due to the initial fall in HbO2 (≈0.17 pHa units), reduction in PACO2 (≈5 mmHg) and higher PAO2 throughout the exercise, which are partially pre-established during acclimatization. Regression equations from these studies predict VESTPD from VO2 and P B in unacclimatized and acclimatized subjects. The attainment of ventilatory acclimatization to altitude can be estimated from the measured vs. predicted difference in VESTPD at low workloads after arrival at altitude.

Restricted access