Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jeong-Guk Kim x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The uranium ingot casting process is one of the steps which consolidate uranium deposits produced by electrorefiner in an ingot form in a pryprocessing technique. Since molten uranium metal reacts with a graphite crucible when the uranium is being dissolved, a graphite crucible cannot be used. Accordingly, a ceramic material must be selected which does not react with the dissolving uranium and this must be used as a coating material on the graphite crucible surface. As to this research, a reactivity experiments were performed between the coating layer and uranium by applying a thermal spray coating to the graphite material with alumina and YSZ ceramic material. As shown in the experimental result, the YSZ coating layer showed a stronger adhesive property on the side where there is no Ni–Al binding material. Moreover, no reaction was apparent between the YSZ coating layer and the uranium. Accordingly, the YSZ material and the process of thermal spray coating are considered to solve the reactive problem between uranium and a graphite crucible.

Restricted access

Abstract  

Recovered salt can be reused in the electrorefining process and the final removed salt from uranium (U) deposits can be fed into a following U casting process to prepare ingot. Therefore, salt distillation process is very important to increase the throughput of the salt separation system due to the high U content of spent nuclear fuel and high salt fraction of U dendrites. Yields on salt recovered by a batch type vacuum distiller transfer device were processed for obtaining pure eutectic salt and U. In this study, the influence of the various temperature slopes of each zones on salt evaporation and recovery rate are discussed. From the experimental results, the optimal temperature of each zones appear at the Top Zone and Zone 1 is 850 °C, Zone 2 is 650 °C and Zone 3 is 600 °C, respectively. In these conditions, the complete evaporation of pure salt in 1.4 h occurred and the amount of recovered salt was about 99 wt%. The adhered salt in U deposits was separated by a temperature slope zone of salt distillation equipment. From the experimental results using U deposits, the amount of salt evaporation was achieved more than 99 wt% and the salt evaporation rate was about 1.16 g/min. Also, the mount of recovered salt was about 99.5 wt%.

Restricted access