Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Ji-Won Chun x
  • Refine by Access: All Content x
Clear All Modify Search

Background and aims

Overindulgence in Internet gaming, which is related to rapid development of the online game industry, can cause a psychiatric disorder known as Internet gaming disorder (IGD). The number of adolescents with IGD is on the rise in countries with developed Internet technologies, such as South Korea. Therefore, it is important to develop biomarkers to detect patients at high risk of IGD. This study investigated expression levels of proteins in the blood of adolescents to provide insight into the development of biomarkers.

Methods

We collected blood samples from 73 subjects [40 healthy adolescents (Internet gaming control, IGC) and 33 adolescents with IGD] between 13:00 and 15:00. We analyzed the expression levels of orexin A, oxytocin, cortisol, melatonin, BDNF, sICAM-1, RANTES, and NCAM using multiplex assay kits.

Results

Orexin A was significantly (p = .016) elevated in the IGD group and the expression levels of melatonin tended to be higher (p = .055) in the IGD group. On the other hand, increased Internet gaming time in the IGD group was negatively correlated (p = .041) with expression of BDNF. On the contrary, sICAM-1 associated with inflammation exhibited the tendency of the positive correlation (p = .073) with Internet gaming time in the IGD group.

Discussion and conclusions

We identified elevation of orexin A in the peripheral blood of adolescents with IGD and a negative correlation between Internet gaming time and BDNF in adolescents with IGD. Our results provide useful information to understand the pathophysiology of IGD in adolescents.

Open access
Journal of Behavioral Addictions
Authors:
Mi Jung Rho
,
Jo-Eun Jeong
,
Ji-Won Chun
,
Hyun Cho
,
Dong Jin Jung
,
In Young Choi
, and
Dai-Jin Kim

Background and aims

Problematic Internet game use is an important social issue that increases social expenditures for both individuals and nations. This study identified predictors and patterns of problematic Internet game use.

Methods

Data were collected from online surveys between November 26 and December 26, 2014. We identified 3,881 Internet game users from a total of 5,003 respondents. A total of 511 participants were assigned to the problematic Internet game user group according to the Diagnostic and Statistical Manual of Mental Disorders Internet gaming disorder criteria. From the remaining 3,370 participants, we used propensity score matching to develop a normal comparison group of 511 participants. In all, 1,022 participants were analyzed using the chi-square automatic interaction detector (CHAID) algorithm.

Results

According to the CHAID algorithm, six important predictors were found: gaming costs (50%), average weekday gaming time (23%), offline Internet gaming community meeting attendance (13%), average weekend and holiday gaming time (7%), marital status (4%), and self-perceptions of addiction to Internet game use (3%). In addition, three patterns out of six classification rules were explored: cost-consuming, socializing, and solitary gamers.

Conclusion

This study provides direction for future work on the screening of problematic Internet game use in adults.

Open access

Abstract

Background and aims

Problematic smartphone use (PSU) is growing rapidly among teens. It has similar presentations as other behavioral addictions in terms of excessive use, impulse control problems, and negative consequences. However, the underlying neurobiological mechanisms remain undiscovered. We hypothesized that structural changes in the striatum might serve as an important link between alteration in glutamate signaling and development of PSU.

Methods

Among 88 participants, twenty (F:M, 12:8; age 16.2 ± 1.1) reported high scores in the smartphone addiction proneness scale (SAPS) with a cut-off score of 42; the other 68 (F:M, 19:49; age 15.3 ± 1.7) comprised the control group. Sociodemographic data and depression, anxiety, and impulsivity traits were measured. Striatal volumes (caudate, putamen, and nucleus accumbens) were estimated from T1 imaging data. Serum glutamate levels were estimated from peripheral blood samples. Group comparisons of each data were performed after controlling for age and gender. Mediation analyses were conducted to test the indirect effects of glutamate level alteration on PSU through striatal volumetric alteration.

Results

The PSU group showed a decrease in both caudate volumes than the control group. Left caudate volume was positively correlated with serum glutamate level, and negatively with impulsivity traits and SAPS scores. The mediation model revealed a significant indirect effect of serum glutamate on SAS scores through the reduced left caudate volume.

Discussion and conclusions

This study suggests that altered glutamatergic neurotransmission may be associated with PSU among teens, possibly through reduced left caudate volume. Current findings might support neural mechanisms of smartphone addiction.

Open access

Abstract

Background

With the continued spread of smartphones and development of the internet, the potential negative effects arising from problematic smartphone use (PSU) in adolescents are being reported on an increasing basis. This study aimed to investigate whether altered resting-state functional connectivity (rsFC) is related to the psychological factors underlying PSU in adolescents.

Methods

Resting-state functional magnetic resonance images were acquired from 47 adolescents with PSU and 46 healthy control adolescents (the CON group). Seed-based functional connectivity analyses were then performed to compare the two groups with respect to rsFC in the right inferior frontal gyrus, associated with various forms of self-control, and rsFC in the left inferior frontal gyrus.

Results

Compared to the CON group, the PSU group exhibited a reduction in rsFC between the right inferior frontal gyrus and limbic areas, including the bilateral parahippocampal gyrus, the left amygdala, and the right hippocampus. In addition, a reduction in fronto-limbic rsFC was associated with the severity of PSU, the degree of self-control, and the amount of time the subjects used their smartphones.

Conclusion

Adolescents with PSU exhibited reduced levels of fronto-limbic functional connectivity; this mechanism is involved in salience attribution and self-control, attributes that are critical to the clinical manifestation of substance and behavioral addictions. Our data provide clear evidence for alterations in brain connectivity with respect to self-control in PSU.

Open access

Background and aims

Internet gaming disorder (IGD) has gained recognition as a potential new diagnosis in the fifth revision of the Diagnostic and Statistical Manual of Mental Disorders, but genetic evidence supporting this disorder remains scarce.

Methods

In this study, targeted exome sequencing was conducted in 30 IGD patients and 30 control subjects with a focus on genes linked to various neurotransmitters associated with substance and non-substance addictions, depression, and attention deficit hyperactivity disorder.

Results

rs2229910 of neurotrophic tyrosine kinase receptor, type 3 (NTRK3) was the only single nucleotide polymorphism (SNP) that exhibited a significantly different minor allele frequency in IGD subjects compared to controls (p = .01932), suggesting that this SNP has a protective effect against IGD (odds ratio = 0.1541). The presence of this potentially protective allele was also associated with less time spent on Internet gaming and lower scores on the Young’s Internet Addiction Test and Korean Internet Addiction Proneness Scale for Adults.

Conclusions

The results of this first targeted exome sequencing study of IGD subjects indicate that rs2229910 of NTRK3 is a genetic variant that is significantly related to IGD. These findings may have significant implications for future research investigating the genetics of IGD and other behavioral addictions.

Open access
Journal of Behavioral Addictions
Authors:
Ji-Won Chun
,
Chang-Hyun Park
,
Jin-Young Kim
,
Jihye Choi
,
Hyun Cho
,
Dong Jin Jung
,
Kook-Jin Ahn
,
Jung-Seok Choi
,
Dai-Jin Kim
, and
In Young Choi

Abstract

Background and aims

Although the Internet has provided convenience and efficiency in many areas of everyday life, problems stemming from Internet use have also been identified, such as Internet gaming disorder (IGD). Internet addiction, which includes IGD, can be viewed as a behavioral addiction or impulse control disorder. This study investigated the altered functional and effective connectivity of the core brain networks in individuals with IGD compared to healthy controls (HCs).

Methods

Forty-five adults with IGD and 45 HCs were included in this study. To examine the brain networks related to personality traits that influence problematic online gaming, the left and right central executive network (CEN) and the salience network (SN) were included in the analysis. Also, to examine changes in major brain network topographies, we analyzed the default mode network (DMN).

Results

IGD participants showed lower functional connectivity between the dorsal lateral prefrontal cortex (DLPFC) and other regions in the CEN than HC participants during resting state. Also, IGD participants revealed reduced functional connectivity between the dorsal anterior cingulate cortex and other regions in the SN and lower functional connectivity in the medial prefrontal cortex of the anterior DMN. Notably, in IGD individuals but not HC individuals, there was a positive correlation between IGD severity and effective connectivity and a positive correlation between reward sensitivity and effective connectivity within the ventral striatum of the SN.

Conclusions

Problematic online gaming was associated with neurofunctional alterations, impairing the capacity of core brain networks.

Open access

Abstract

Background and aims

Impaired inhibitory control accompanied by enhanced craving is hallmark of addiction. This study investigated the effects of transcranial direct current stimulation (tDCS) on response inhibition and craving in Internet gaming disorder (IGD). We examined the brain changes after tDCS and their correlation with clinical variables.

Methods

Twenty-four males with IGD were allocated randomly to an active or sham tDCS group, and data from 22 participants were included for analysis. Participants self-administered bilateral tDCS over the dorsolateral prefrontal cortex (DLPFC) for 10 sessions. Stop-signal tasks were conducted to measure response inhibition and participants were asked about their cravings for Internet gaming at baseline and post-tDCS. Functional magnetic resonance imaging data were collected at pre- and post-tDCS, and group differences in resting-state functional connectivity (rsFC) changes from the bilateral DLPFC and nucleus accumbens were examined. We explored the relationship between changes in the rsFC and behavioral variables in the active tDCS group.

Results

A significant group-by-time interaction was observed in response inhibition. After tDCS, only the active group showed a decrease in the stop-signal reaction time (SSRT). Although craving decreased, there were no significant group-by-time interactions or group main effects. The anterior cingulate cortex (ACC) showed group differences in post- versus pre-tDCS rsFC from the right DLPFC. The rsFC between the ACC and left middle frontal gyrus was negatively correlated with the SSRT.

Discussion and conclusion

Our study provides preliminary evidence that bilateral tDCS over the DLPFC improves inhibitory control and could serve as a therapeutic approach for IGD.

Open access