Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jianfeng Wang x
Clear All Modify Search


We provide uniform rates of convergence in the central limit theorem for linear negative quadrant dependent (LNQD) random variables. Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\{X_{n},\allowbreak n\ge1\}$ \end{document} be a LNQD sequence of random variables with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $EX_{n}=0$ \end{document}, set \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $S_{n}=\sum_{j=1}^{n}X_{j}$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $B_{n}^{2}=\text{Var}\, (S_{n})$ \end{document}. We show that \begin{gather*} \sup_{x} \left|P\left(\frac{S_{n}}{B_{n}}<x\right)-\Phi(x)\right|= O\bigg(n^{-\delta/(2+3\delta)}\vee \frac{n^{3\delta^{2}/(4+6\delta)}}{B^{2+\delta}_{n}} \sum_{i=1}^{n} E{|X_{i}|}^{2+\delta}\bigg) \end{gather*} under finite \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(2+\delta)$ \end{document}th moment and a power decay rate of covariances. Moreover, by the truncation method, we obtain a Berry--Esseen type estimate for negatively associated (NA) random variables with only finite second moment. As applications, we obtain another convergence rate result in the central limit theorem and precise asymptotics in the law of the iterated logarithm for NA sequences, and also for LNQD sequences.

Restricted access


Background and aims

Impaired behavioral inhibitory control (BIC) is known to play a crucial role in addictive behavior. However, research has been inconclusive as to whether this is also the case for cybersex addiction. This study aimed to investigate the time course of BIC in male individuals with tendencies towards cybersex addiction (TCA) using event-related potentials (ERPs) and to provide neurophysiological evidence of their deficient BIC.


Thirty-six individuals with TCA and 36 healthy controls (HCs) were given a Two-Choice Oddball task that required them to respond differently to frequent standard stimuli (images of people) and infrequent deviant stimuli (pornographic images) within 1,000 ms. Electroencephalography (EEG) was recorded as the participants performed the task.


Despite the similarity of standard stimuli between the groups in terms of reaction times (RTs), the RTs of the TCA group to deviant stimuli were much slower than those of the HC group. The behavioral difference was accompanied by group differences in the averaged amplitudes of N2 (200–300 ms) and P3 (300–500 ms) components in the deviant-standard difference wave. More specifically, compared to the HC group, the TCA group demonstrated smaller N2 and P3 amplitude differences for deviant than standard stimuli.

Discussion and conclusions

Individuals with TCA were more impulsive than HC participants and shared neuropsychological and ERP characteristics of substance use disorder or behavioral addictions, which supports the view that cybersex addiction can be conceptualized as a behavioral addiction.

Open access