Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: Jing Yang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot-stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219 °C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm−1 attributed to ν1 In–O symmetric stretching mode, bands at 1137 and 1155 cm−1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm−1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3, new Raman bands are observed at 125, 295, 488 and 615 cm−1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot-stage Raman spectroscopy.

Restricted access

Abstract

This study discusses the thermal behavior of the 6.5 Ah cylinder Ni/MH hydride battery with 0.5 wt% ytterbium oxide (Yb2O3) in nickel electrode and 1.0 wt% super absorbent polymer (SAP) in hydrogen-storage alloy (MH) electrode during charging to 150% of its rating capacity. Quantity of heat and heat generation rate of the battery during charging are studied by quartz frequency microcalorimeter. Heat generation curve is fitted into a function, and heat transport equation is solved. Using measured data, the internal temperature profiles at the terminal moment of charging at 1C, 3C, and 5C are simulated by FEM. Influence of Yb2O3 and SAP on the thermal behavior of Ni/MH battery is examined by the two-dimensional thermal model. Results show that addition of Yb2O3 and SAP can achieve substantial improvement for thermal behavior of Ni/MH battery at 1C,3C, and 5C charging.

Restricted access

Abstract

The thermal behavior and decomposition of kaolinite–potassium acetate intercalation complex was investigated through a combination of thermogravimetric analysis and infrared emission spectroscopy. Three main changes were observed at 48, 280, 323, and 460 °C which were attributed to (a) the loss of adsorbed water, (b) loss of the water coordinated to acetate ion in the layer of kaolinite, (c) loss of potassium acetate in the complex, and (d) water through dehydroxylation. It is proposed that the potassium acetate intercalation complex is stability except heating at above 300 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the kaolinite intercalation complex when the temperature is raised. The dehydration of the intercalation complex is followed by the loss of intensity of the stretching vibration bands at region 3600–3200 cm−1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm−1. Dehydration is completed by 400 °C and partial dehydroxylation by 650 °C. The inner hydroxyl group remained until around 700 °C.

Restricted access

Abstract

Ternary nanostructured CuO/Ti0.8Ce0.2O2 catalysts were prepared by a one-step surfactant-assisted method of nanoparticle assembly. The textural and structural properties of the CuO/Ti0.8Ce0.2O2 catalysts were characterized by XRD, TGA, BET, XPS and H2-TPR. Their catalytic performance for low-temperature CO oxidation was studied by using a catlab system. CuO supported on binary Ti0.8Ce0.2O2 support showed higher catalytic activity than CuO supported on single CeO2 or TiO2 support. The calcination temperature had a remarkable influence on the catalytic activity of the CuO/Ti0.8Ce0.2O2 catalysts. The CuO/Ti0.8Ce0.2O2 catalyst calcined at 500 °C exhibited the highest catalytic activity with T50% and T100% at 82 and 123 °C, respectively. According to the XRD, BET and H2-TPR analyses, the higher surface areas and more highly dispersed small particle size CuO should be responsible for the high catalytic activity of catalysts.

Restricted access

Abstract  

This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of the 99mTc(CO)3–AOPA colchicine conjugate. The novel ligand was successfully synthesized by conjugation of N-(acetyloxy)-2-picolylamino (AOPA) to deacetylcolchicine via a short carbonyl-methylene linker. Radiolabeling was performed in high yield with [99mTc(CO)3]+ core. 99mTc(CO)3–AOPA colchicine conjugate was hydrophilic and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that 99mTc(CO)3–AOPA colchicine conjugate accumulated in the tumor with good uptake and retention. However, its clearance from normal organs was not so fast, resulting in poor T/NT ratios. Further modification on the linker or/and 99mTc-chelate to improve the tumor targeting efficacy and in vivo kinetic profiles is currently in progress.

Restricted access

A double-development TLC method has been developed for simultaneous qualitative and quantitative analysis of hydrophilic and lipophilic constituents of Salvia miltiorrhiza (Danshen). The optimized mobile phases dichloromethane-ethyl acetate-formic acid 22:24:10 (ν/ν) and petroleum ether-ethyl acetate-cyclohexane 25:11:14 (ν/ν) were used for the double development on nano-silica gel 60F254 plates. Their characteristic TLC profiles were observed under UV light at 254 and 365 nm and the bands were then revealed by reaction with 5% H2SO4 in EtOH. Quantification of twelve compounds was achieved by densitometry at 260 or 290 nm, with reference at 400 nm. Linearity was quite good (R 2 > 0.99) within the ranges tested. This method could be used for quality control of Danshen.

Restricted access

Abstract  

The sorption of uranium(VI) from aqueous solutions was investigated using synthesized magnesium silicate hollow spheres as a novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, contact time and initial U(VI) concentrations on uranium sorption efficiency. The desorbing of U(VI) and the effect of coexisting ions were also investigated. Kinetic studies showed that the sorption followed a pseudo-second-order kinetic model. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 25–400 mg/L. The maximum uranium sorption capacity onto magnesium silicate hollow spheres was estimated to be about 107 mg/g under the experimental conditions. Desorption of uranium was achieved using inorganic acid as the desorbing agent. The practical utility of magnesium silicate hollow spheres for U(VI) uptake was investigated with high salt concentration of intercrystalline brine. This work suggests that magnesium silicate hollow spheres can be used as a highly efficient adsorbent for removal of uranium from aqueous solutions.

Restricted access
Acta Veterinaria Hungarica
Authors:
Ching-Yang Cheng
,
Jing-Ruei Chi
,
Sin-Rong Lin
,
Chi-Chiang Chou
, and
Chin-Cheng Huang

The objective of this study was to use a 5′-nuclease (TaqMan) real-time PCR method with primers and probe specific to the spaQ gene as a rapid approach to quantitatively determine Salmonella Typhimurium. The result showed that the correlation coefficient between real-time PCR estimates and bovine serum albumin (BSA) plate counts of S . Typhimurium was 0.99, independently of 10 5 -fold numbers of bystander Escherichia coli O157:H7 or total viable counts. The sensitivity of the real-time quantitative PCR assay was 10 CFU/mL for pure S . Typhimurium culture without enrichment. A known number of S . Typhimurium target cells were inoculated to dumpling fillings and chicken nuggets and DNA was extracted for real-time PCR analysis. The sensitivity was 60 CFU/g for S . Typhimurium inoculated to the food samples without any preceding procedure of enrichment. The duration of the entire experiment from DNA isolation and purification to PCR amplification was less than 12 h. This study demonstrated that realtime PCR is a rapid and reliable technique for quantifying S . Typhimurium possessing the spaQ gene in pure culture and in meat products.

Restricted access

Abstract  

This study reports the synthesis, radiolabeling and preliminary biodistribution results of [99mTc(CO)3(MN-TZ-BPA)]+ in tumor-bearing mice. The novel nitroimidazole derivative was successfully synthesized by conjugation of bis(pyridin-2-ylmethyl)amine (BPA) to 2-methyl-5-niroimidazole via “click” reaction. The ligand could be labeled by [99mTc(CO)3]+ core in high yield to get [99mTc(CO)3(MN-TZ-BPA)]+, which was very hydrophilic and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that [99mTc(CO)3(MN-TZ-BPA)]+ accumulated in the tumor with certain initial uptake while poor retention. The rapid clearance from normal organs with favorable tumor/muscle ratios warrants further research to improve tumor targeting efficacy and pharmacokinetic profile of radiolabeled nitroimidazoles by structural modification.

Restricted access