Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Jolán Csiszár x
  • Refine by Access: All Content x
Clear All Modify Search

The effectiveness of Cu 2+ accumulation was investigated in three wheat cultivars with different copper sensitivity ( Triticum aestivum cv. GK Tiszatáj, GK Kata and GK Öthalom). Supraoptimal Cu 2+ concentrations result in toxicity symptoms in the sensitive genotype and increase the production of the stress hormone, ethylene both in the leaves and root tissues of wheat seedlings. The sensitive cultivar, cv. Öthalom produced less ethylene than the tolerant genotypes (cvs Tiszatáj and Kata) in the roots whether the ethylene measurements were done over the 6-h period after Cu 2+ exposure. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, did not change characteristically during this period in either the tolerant or sensitive seedlings. The biosynthesis of ethylene has a common intermediate, S-adenosylmethionine (SAM) with the synthesis of the polyamine spermidine and 2-deoxymugineic acid, a Fe 3+ -solubilizing and transporting wheat phytosiderophore. These chelating substances also mediate the transport of different bivalent cations, such as Cu 2+ . The biosynthetic pathways of ethylene and polyamines, spermidine and spermine may compete for SAM with the phytosiderophore synthesis. Simultaneous inhibition of SAM decarboxylase by 0.5 M methylglyoxal bis (guanylhydrazone) (MGBG), and 1-aminocyclopropane-1-carboxylic acid synthase by 10 μM (2-aminoethoxy-vinyl)glycine (AVG), significantly increased the Cu 2+ accumulation in root tissues of the wheat cultivars independently of their sensitivities. MGBG alone resulted in an enhanced copper content but AVG proved to be ineffective. This suggests that the amount of SAM allocated for polyamine formation may limit the phytosiderophore synthesis or spermidine (spermine) in itself may control the uptake of Cu 2+ .

Restricted access
Acta Biologica Hungarica
Authors: Ágnes Gallé, Zalán Czékus, Krisztina Bela, Edit Horváth, Jolán Csiszár, and Péter Poór

Although the participation of glutathione transferases (GSTs) in light-dependent pathways and the circadian changes in the whole detoxification system have been studied, there are fewer results regarding the exact daily fluctuation of GSTs. In the present study, it was demonstrated that light up-regulated, while dark period decreased the plant GST activity and the expression of the selected tau group GST genes in tomato. These findings provide additional information on our current knowledge on the circadian rhythm of GSTs in plants and could help in further defining detoxification processes.

Restricted access
Acta Biologica Hungarica
Authors: Edit Horváth, Krisztina Bela, Csaba Papdi, Ágnes Gallé, László Szabados, Irma Tari, and Jolán Csiszár

Arabidopsis thaliana contains 54 soluble glutathione transferases (GSTs, EC 2.5.1.18), which are thought to play major roles in oxidative stress responses, but little is known about the function of individual isoenzymes. The role of AtGST phi 9 (GSTF9) in the salt- and salicylic acid response was investigated using 2-week-old Atgstf9 and wild type (Wt) plants. Atgstf9 mutants accumulated more ascorbic acid (AsA) and glutathione (GSH) and had decreased glutathione peroxidase (GPOX) activity under control conditions. Treatment of 2-week-old seedlings with 10−7 M salicylic acid (SA) for 48 h resulted in elevated H2O2 level and enhanced GST activity in Atgstf9 plants, 10−5 M SA treatment enhanced the malondialdehyde and dehydroascorbate contents compared to Wt. 50 and 150 mM NaCl increased the GST activity, AsA and GSH accumulation in Atgstf9 seedlings more pronounced than in Wt plants. We found that the Atgstf9 mutants had altered redox homeostasis under control and stress conditions, in which elevated AsA and GSH levels and modified GST and GPOX activities may play significant role. The half-cell potential values calculated from the concentration of GSH and GSSG indicate that this GST isoenzyme has an important role in the salt stress response.

Restricted access
Acta Biologica Hungarica
Authors: Irma Tari, D. Camen, Giancarla Coradini, Jolán Csiszár, Erika Fediuc, Katalin Gémes, A. Lazar, E. Madosa, Sorina Mihacea, P. Poor, Simona Postelnicu, Mihaela Staicu, Ágnes Szepesi, G. Nedelea, and L. Erdei

Drought resistance of bean landraces was compared in order to select genotypes with either high morphological or high biochemical-physiological plasticity. The lines in the former group exhibited fast reduction in fresh and dry mass, decreased the water potential in primary leaves after irrigation withdrawal and the biomass mobilized from the senescent primary leaves was allocated into the roots. These genotypes had high frequency of primary leaf abscission under water stress. The genotypes with plasticity at the biochemical level maintained high water potential and photochemical efficiency, i.e. effective quantum yield, high photochemical (qP) and low non-hotochemical (NPQ) quenching in primary leaves under drought stress. While superoxide dismutase activity was not influenced by the drought and the genotype, catalase activity increased significantly in the primary leaves of the genotypes with efficient biochemical adaptation. Lines with high morphological plasticity exhibited higher quaiacol peroxidase activity under drought. Proline may accumulate in both cases, thus it may be a symptom of protein degradation or a successful osmotic adaptation. On the basis of contrasting responses, the genetic material cannot be screened for a large-scale breeding program by a single physiological parameter but by a set of the methods presented in this work.

Restricted access