Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jonathan David Farley x
  • Refine by Access: All Content x
Clear All Modify Search

Summary  

It is shown that, if two bounded distributive lattices satisfy the join-infinite distributive law (JID), then their coproduct also satisfies this law. In 1986, Yaqub proved that generalized Post algebras with a finite lattice of constants satisfy JID, and stated that, in general, it is not known whether a generalized Post algebra satisfies JID when its lattice of constants satisfies JID. In this note, the statement is proved.

Restricted access

Proctor and Scoppetta conjectured that

  • (1) there exists an infinite locally finite poset that satisfies their conditions VT and NTC but not SIS;

  • (2) there exists an infinite locally finite poset satisfying their conditions D3-C and D3MF but not both VT and FT; and

  • (3) there exists an infinite locally finite poset satisfying their conditions D3-C and D3MD but not NCC.

In this note, the conjecture of Proctor and Scoppetta, which is related to d-complete posets, is proven.

Open access

Let k ≥ 1. A Sperner k-family is a maximum-sized subset of a finite poset that contains no chain with k + 1 elements. In 1976 Greene and Kleitman defined a lattice-ordering on the set Sk (P) of Sperner k-families of a fifinite poset P and posed the problem: “Characterize and interpret the join- and meet-irreducible elements of Sk (P),” adding, “This has apparently not been done even for the case k = 1.”

In this article, the case k = 1 is done.

Open access