Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Julianna Thuróczy x
Clear All Modify Search

Twenty-two serum samples of healthy bitches were tested with the frozen and lyophilised version of the same ELISA kit (Quanticheck, Faculty of Veterinary Science, Budapest, Hungary). Samples were chosen on the basis of their progesterone (P4) concentrations, which were between 1.00 and 20.00 ng/mL. As it is well known, this range has the highest clinical relevance in ovulation diagnosis. Both types of microplates were read at 15-min intervals from the 15th until the 90th minute (min) of incubation, and the results were compared with those of frozen plates at 60 min of incubation as 100 percent. Lyophilised microplates gave on average 18 percent higher results than the frozen version at equal incubation times. The highest difference between lyophilised and frozen samples was observed at 45 and 60 min of incubation. Ninety-four percent of the reaction in the frozen microplate occurred in the first 15 min, and during the subsequent 30 min the reaction seemingly stopped. After the 45th min of incubation, this 94 percent increased to 108 percent in the subsequent 30 min, which remained the final approximate result at the end of the 90 min of incubation. In contrast to the frozen microplate, the measured concentration increased continuously in the lyophilised version and reached the highest level at the 60th min. The results of the lyophilised microplate reached the same level at 30 min of incubation as those of the frozen version at 60 min. In conclusion, a mechanical increase or decrease of the incubation time does not generate a linear change in the test results. This study demonstrated that the results of a series of samples collected from the same bitch cannot be compared if they are measured with different laboratory methods or different ELISA kits.

Open access
Acta Veterinaria Hungarica
Authors: Beáta Török-Nagy, Péter Vajdovich, Lajos Balogh, Julianna Thuróczy and Béla Dénes


The goal of this study was to evaluate the suitability of a commercially available D-dimer assay as a diagnostic tool for testing dogs. This assay is an immunoturbidimetric diagnostic test, capable of determining the D-dimer levels in human plasma by using 2B9 monoclonal antibody. Plasma samples of clinically healthy (n = 20) and tumour-bearing (n = 50) dogs were measured. The tumours were grouped on the basis of histological type and aggressiveness, and then the measured D-dimer concentrations of these groups were compared to those of the control group. The differences were analysed statistically. For benign tumours, we did not find alterations in the D-dimer levels. However, in the case of malignant tumours (lymphoma, sarcoma, and carcinoma) and in the presence of metastases, significantly elevated D-dimer levels were measured. The assay proved to be suitable for measuring the D-dimer levels in plasma samples of dogs. The calculated reference range for dogs was confirmed to be between 0.06 and 0.69 µg/mL fibrinogen equivalent unit.

Open access
Acta Veterinaria Hungarica
Authors: Linda Müller, Eszter Kollár, Lajos Balogh, Zita Pöstényi, Teréz Márián, Ildikó Garai, László Balkay, György Trencsényi and Julianna Thuróczy

The relationship between metabolic disorders and the distribution of fat in different body regions is not clearly understood in humans. The aim of this study was to develop a suitable method for assessing the regional distribution of fat deposits and their metabolic effects in dogs. Twenty-five dogs were subjected to computed tomographic (CT) imaging and blood sampling in order to characterise their metabolic status. The different fat areas were measured on a cross-sectional scan, and the animals’ metabolic status was evaluated by measuring fasting glucose, insulin and leptin levels. The volume of visceral adipose tissue is the main determinant of leptin levels. The correlation of visceral fat volume and leptin concentration was found to be independent of insulin levels or the degree of insulin resistance. There was a positive correlation between the visceral to subcutaneous fat volume ratio and serum insulin concentration, and a similar trend was observed in the relationship of fat ratio and insulin resistance. The distribution of body fat essentially influences the metabolic parameters in dogs, but the effects of adiposity differ between humans and dogs. The findings can facilitate a possible extrapolation of results from animal studies to humans with regard to the metabolic consequences of different obesity types.

Restricted access