Search Results

You are looking at 1 - 10 of 37 items for

  • Author or Editor: Jun Wang x
  • All content x
Clear All Modify Search

Abstract

The thermal oxidative degradation kinetics of pure acrylonitrile–butadiene–styrene (ABS) and the flame-retarded ABS materials with intumescent flame retardant (IFR) were investigated using Kissinger, Flynn–Wall–Ozawa, and Horowitz–Metzger methods. The results showed that the degradation of all samples included two stages, the activation energy at the first stage decreased by the incorporation of these flame retardant components, while increased at the second stage. The activation energy order of the flame-retarded ABS samples at stage 2 illustrates the relationship between the composition of IFRs and their flame retardancy, FR materials with appropriate acid agent/char former ratio has higher activation energy and better flame retardancy.

Restricted access

Abstract

The nonisothermal crystallization kinetics of poly(vinylidene fluoride) (PVDF) in PVDF/MMT, SiO2, CaCO3, or PTFE composites was investigated through differential scanning calorimetry measurements. The enhanced nucleation of PVDF in its nanocomposites with four types of nanoparticle, and their impact on the crystallization kinetics and melting behaviors were discussed. The modified Avrami method and combined Ozawa–Avrami approaches successfully described the primary crystallization of PVDF in nanocomposite samples under the nonisothermal crystallization process. The activation energy was determined according to the Friedman method and it was quite fit with the results of the analysis according to the modified Avrami model and a combined Ozawa–Avrami model.

Restricted access

Abstract

A novel charring agent poly(p-propane terephthalamide) (PPTA) was synthesized by using terephthaloyl chloride and 1,3-propanediamine through solution polycondensation and it was used together with ammonium polyphosphate (APP) to prepare a novel intumescent flame retardant (IFR) for ABS. The thermal degradation behaviour and flame retardancy were investigated, the results showed that PPTA could be effective as a charring agent, the flame retardancy of ABS and the mass of residues improved greatly with the addition of IFR. When the content of APP was 22.5 mass% and PPTA was 7.5 mass%, the limiting oxygen index (LOI) value of IFR-ABS system was found to be 32.4, and class V-0 of UL-94 test was passed. Moreover, the synergistic effects of two different adjuvants AlPi and MnO2 in IFR-ABS system have been studied.

Restricted access

The essence of traditional Chinese furniture

Applied expansive research on tendon-and-mortise structure in modern furniture design

Pollack Periodica
Authors: Jie Wang and Jun Han

Mortise and tenon structure is the essence of traditional Chinese creations, as the main structure of traditional Chinese furniture has its historical origins, fitting in with the background and aesthetic standards of the time. This paper explores the possibility for a new understanding and re-discovery of its use and artistic value in the context of modern times.

Restricted access

Abstract  

β-MCM41 composite molecular sieves were hydrothermally synthesized using NaOH treated β zeolite as precursors, and Pt/β-MCM41 bifunctional catalysts were prepared by impregnation. Hβ, desilicated Hβ by NaOH treatment (Dβ), and the physical mixture of Hβ and MCM41 (β+MCM41) were also used as control supports for bifunctional catalysts. All the catalysts were characterized by ICP, XRD, BET, nitrogen adsorption–desorption isotherm and NH3-TPD, and evaluated in the hydroisomerization of n-heptane using an atmospheric fixed bed flow reactor. Dβ, β+MCM41, or β-MCM41 supported Pt catalysts showed higher selectivity to isoheptanes than the counterpart Pt/Hβ did due to the presence of mesopores in addition to the zeolite micropores. Moreover, Pt/β-MCM41 was demonstrated to be a much more selective catalyst among them because the connection between mesopores and micropores accelerated the diffusion of larger molecules of isoheptanes. Under optimal conditions, Pt/β-MCM41 provided a very high selectivity to isomerization of 96.5%, coupled with a considerable high conversion of n-heptane of 56.0%.

Restricted access

Abstract

A bifunctional catalyst Pt/Hβ-n (Pt loading: 0.4 wt%) was prepared by the impregnation of an aqueous solution of chloroplatinic acid with β zeolite, wherein the β zeolite support has an unusual morphology of egg-like microspheres assembled by nanocrystallites. Other two control catalysts were also prepared using a β support with micro-sized crystals and a commercial one with varying crystal sizes. The catalysts were characterized by XRD, SEM, ICP, N2 sorption isotherms and mesopore size distribution, and evaluated in the hydroisomerization of n-heptane in an atmospheric fixed bed flow reactor. Though Pt/Hβ-n has similar acidity and Pt loading (0.4 wt%) to the two control catalysts, it exhibits remarkably higher conversion of n-heptane and selectivity to isomerization. According to the characterization data, the higher activity of Pt/Hβ-n is the result of the faster diffusion of reactants in shorter channels of nanocrystallines and the uniformly distributed mesopores within the microspheres.

Restricted access

Abstract  

Non-isothermal crystallization kinetics and subsequent melting behavior for three kinds of ethylene-acrylic acid copolymer (EAA) are investigated via differential scanning calorimetry (DSC). From the Jeziorny method, the crystallization rate of the primary stage is significantly influenced by the competitive mobility of chains. While the crystallization rate in the secondary stage decreases in order of acrylic acid (AA) content in copolymers. Mo’s method can also provide a good fitting. Difference between the Jeziorny method and Mo’s method analysis is because of a higher effect of non-crystallizable chain ends. The effective activation energy is also determined via Kissinger’s method.

Restricted access

Abstract  

A study of the synergistic extraction of uranium(VI) from sulphuric acid solution with 1-phenyl-3-methyl-4-(2-chlorobenzoyl)-pyrazolone-5 (PMCBP) together with di-(2-ethylhexyl)-phosphoric acid (HDEHP) and also mono-(2-ethylhexyl)-2-ethylhexyl-phosphate (HEHEHP) is described. The results suggest that the compositions of the extracted species is UO2XHA2 and UO2X2H2A2 respectively. Models for the extraction mechanism is also discussed.

Restricted access

Abstract  

The thermal stability of sheepskin collagen cross-linked with chrome sulfate and mimosa (MI)–oxazolidine (OZ), respectively, had been researched in this experiment. All samples’ shrinkage temperatures (T s) are determined by a special T s-testing-apparatus and denaturation temperatures (T d) are determined by the differential scanning calorimetry. The relations between the modified collagens containing moisture and their hydrothermal stability, T s or T d, were studied. The results show that the cross linking agents can enhance the thermal stability of modified collagen whose T s are 109.8 and 110.6 °C for collagen treated with chrome and MI–OZ, respectively. When the samples contain 25–71.9% moisture for chrome leather and 20–71.1% for leather treated with MI–OZ, the hydrothermal stability will decrease with the increase of moisture. It was found that the difference between T s and T d of collagen modified by chrome is more obvious than that of collagen modified with MI–OZ. And when the moisture of chrome leather exceeds 55%, T d cannot express thermal stability of modified collagen as a substitute for T s, and the moisture is 40% for leather tanned with MI–OZ.

Restricted access

Abstract  

Gd@C82(OH)40 has been developed as a new generation of MRI contrast agent. But recently, it was found that Gd@C82(OH)x with a larger number of OH (x>36) would lead to cage break and hence, release of highly toxic Gd ions. We synthesized the more stable Gd@C82(OH)x with less OH-number, Gd@C82(OH)16, and studied its proton relaxivity and MRI images. The results indicate that Gd@C82(OH)16 also gives high proton relaxivity, even higher than that of (NMG)2-Gd-DTPA. The bio-distribution indicated that Gd@C82(OH)16 tends to be entrapped in the liver and kidney and remained in tissue for about 2 hours. The results suggest that the more stable metallofullerene derivative Gd@C82(OH)16 can be the potential candidate of the new MRI contrast agent.

Restricted access