Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Junzheng Xu x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The sorption of Pb(II) from aqueous solution using NKF-5 zeolite was investigated by batch technique under ambient conditions. The NKF-5 zeolite sample was characterized by using FTIR and X-ray powder diffraction in detail. The sorption of Pb(II) was investigated as a function of pH, ionic strength, foreign ions, and humic substances. The results indicated that the sorption of Pb(II) on NKF-5 zeolite was strongly dependent on pH. The sorption was dependent on ionic strength at low pH, but independent of ionic strength at high pH. At low pH, the sorption of Pb(II) was dominated by outer-sphere surface complexation and ion exchange with H+ on NKF-5 zeolite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. From the experimental results, one can conclude that NKF-5 zeolite has good potentialities for cost-effective preconcentration of Pb(II) from large volumes of aqueous solutions.

Restricted access

Abstract  

The adsorption of Eu(III) on multiwalled carbon nanotubes (MWCNTs) as a function of pH, ionic strength and solid contents are studied by batch technique. The results indicate that the adsorption of Eu(III) on MWCNTs is strongly dependent on pH values, dependent on ionic strength at low pH values and independent of ionic strength at high pH values. Strong surface complexation and ion exchange contribute to the adsorption of Eu(III) on MWCNTs at low pH values, whereas surface complexation and surface precipitation are the main adsorption mechanism of Eu(III) on MWCNTs. The desorption of adsorbed Eu(III) from MWCNTs by adding HCl is also studied and the recycling use of MWCNTs in the removal of Eu(III) is investigated after the desorption of Eu(III) at low pH values. The results indicate that adsorbed Eu(III) can be easily desorbed from MWCNTs at low pH values, and MWCNTs can be repeatedly used to remove Eu(III) from aqueous solutions. MWCNTs are suitable material in the preconcentration and solidification of radionuclides from large volumes of aqueous solutions in nuclear waste management.

Restricted access

Abstract  

Carbonate hydroxylapatite (CHAP), prepared from eggshell waste, was used to remove 60Co(II) from aqueous solutions. The sorption of 60Co(II) on CHAP as a function of contact time, pH, ionic strength and foreign ions in the absence and presence of humic acid and fulvic acid under ambient conditions was studied. The sorption of 60Co(II) on CHAP was strongly dependent on pH and ionic strength. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) of 60Co(II) sorption on CHAP were calculated from the temperature-dependent sorption isotherms, and the results indicated that the sorption process of 60Co(II) on CHAP was endothermic and spontaneous. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on CHAP surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. Experimental results also indicated that CHAP was a suitable low-cost adsorbent for pre-concentration and solidification of 60Co(II) from large volumes of aqueous solutions.

Restricted access