Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: K. Dziurka x
  • Refine by Access: All Content x
Clear All Modify Search
Cereal Research Communications
Authors: A. Noga, M. Warchoł, I. Czyczyło-Mysza, I. Marcińska, K. Dziurka, T. Warzecha, and E. Skrzypek

Chlorophyll a fluorescence can provide insight into the ability of plants to tolerate environmental conditions that can damage photosynthetic apparatus and decrease yield. The aim of the study was to determine the relationship between chlorophyll a fluorescence parameters and yield components of oat DH lines. All DH lines significantly differed in chlorophyll a fluorescence parameters and yield components. The overall performance index of PSII photochemistry (PI), showed the highest variation between DH lines, whereas the lowest had the ratio of variable to maximum fluorescence (Fv/Fm). The highest differences were observed in the number of grains per plant (21.3 to 600). Thousand-grain weight varied from 17.82 g to 41.01 g and the biomass from 8.01 g to 29.31 g. The highest negative correlations were found between Fv/Fm, Area (pool size of electron acceptors from PSII), PI and grain number per plant and biomass. Positive correlations were observed between light energy absorption (ABS/CS), grain number per plant and biomass, as well as the amount of excitation energy trapped in PSII reaction centers (TRo/CS) and biomass. Principal component analysis of chlorophyll a fluorescence parameters, together with yield components, discriminated two oat DH lines groups according to their photosynthetic efficiency and yield.

Restricted access
Cereal Research Communications
Authors: E. Skrzypek, M. Warchoł, I. Czyczyło-Mysza, I. Marcińska, A. Nowakowska, K. Dziurka, K. Juzoń, and A. Noga

Oat haploid embryos were obtained by wide crossing with maize. The effect of light intensity during the growing period of donor plants (450 and 800 µmol m−2 s−1) and in vitro cultures (20, 40, 70 and 110 µmol m−2 s−1) was examined for the induction and development of oat DH lines. Oat florets (26008) from 32 genotypes were pollinated with maize and treated with 2,4-dichlorophenoxyacetic acid. All the tested genotypes formed more haploid embryos when donor plants were grown in a greenhouse (9.4%) compared to a growth chamber (6.1%). The light intensity of 110 µmol m−2 s−1 during in vitro culture resulted in the highest percentage of embryo germination (38.9%), conversion into plants (36.4%) and DH line production (9.2%) when compared with lower light intensities (20, 40 and 70 µmol m−2 s−1). The results show that the growth conditions of the donor plant and light intensity during in vitro culture can affect the development of haploid embryos. This fact may have an impact on oat breeding programs using oat × maize crosses.

Restricted access